Files
ManimML/examples/variational_autoencoder/variational_autoencoder.py
2022-04-22 19:08:28 -04:00

326 lines
13 KiB
Python

"""Autoencoder Manim Visualizations
In this module I define Manim visualizations for Variational Autoencoders
and Traditional Autoencoders.
"""
from manim import *
import pickle
import numpy as np
import os
from PIL import Image
import manim_ml.neural_network as neural_network
from manim_ml.neural_network.embedding import EmbeddingLayer
from manim_ml.neural_network.feed_forward import FeedForwardLayer
from manim_ml.neural_network.image import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
class VariationalAutoencoder(VGroup):
"""Variational Autoencoder Manim Visualization"""
def __init__(
self, encoder_nodes_per_layer=[5, 3], decoder_nodes_per_layer=[3, 5], point_color=BLUE,
dot_radius=0.05, ellipse_stroke_width=2.0, layer_spacing=0.5
):
super(VGroup, self).__init__()
self.encoder_nodes_per_layer = encoder_nodes_per_layer
self.decoder_nodes_per_layer = decoder_nodes_per_layer
self.point_color = point_color
self.dot_radius = dot_radius
self.layer_spacing = layer_spacing
self.ellipse_stroke_width = ellipse_stroke_width
# Make the VMobjects
self.encoder, self.decoder = self._construct_encoder_and_decoder()
self.embedding = self._construct_embedding()
# Setup the relative locations
self.embedding.move_to(self.encoder)
self.embedding.shift([1.4 * self.encoder.width, 0, 0])
self.decoder.move_to(self.embedding)
self.decoder.shift([self.decoder.width * 1.4, 0, 0])
# Add the objects to the VAE object
self.add(self.encoder)
self.add(self.decoder)
self.add(self.embedding)
def _construct_encoder_and_decoder(self):
"""Makes the VAE encoder and decoder"""
# Make the encoder
layer_node_count = self.encoder_nodes_per_layer
encoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
encoder.scale(1.2)
# Make the decoder
layer_node_count = self.decoder_nodes_per_layer
decoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
decoder.scale(1.2)
return encoder, decoder
def _construct_embedding(self):
"""Makes a Gaussian-like embedding"""
embedding = VGroup()
# Sample points from a Gaussian
num_points = 200
standard_deviation = [0.9, 0.9]
mean = [0, 0]
points = np.random.normal(mean, standard_deviation, size=(num_points, 2))
# Make an axes
embedding.axes = Axes(
x_range=[-3, 3],
y_range=[-3, 3],
x_length=2.2,
y_length=2.2,
tips=False,
)
# Add each point to the axes
self.point_dots = VGroup()
for point in points:
point_location = embedding.axes.coords_to_point(*point)
dot = Dot(point_location, color=self.point_color, radius=self.dot_radius/2)
self.point_dots.add(dot)
embedding.add(self.point_dots)
return embedding
def _construct_image_mobject(self, input_image, height=2.3):
"""Constructs an ImageMobject from a numpy grayscale image"""
# Convert image to rgb
input_image = np.repeat(input_image, 3, axis=0)
input_image = np.rollaxis(input_image, 0, start=3)
# Make the ImageMobject
image_mobject = ImageMobject(input_image, image_mode="RGB")
image_mobject.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
image_mobject.height = height
return image_mobject
def _construct_input_output_images(self, image_pair):
"""Places the input and output images for the AE"""
# Takes the image pair
# image_pair is assumed to be [2, x, y]
input_image = image_pair[0][None, :, :]
recon_image = image_pair[1][None, :, :]
# Make the image mobjects
input_image_object = self._construct_image_mobject(input_image)
recon_image_object = self._construct_image_mobject(recon_image)
return input_image_object, recon_image_object
def make_dot_convergence_animation(self, location, run_time=1.5):
"""Makes dots converge on a specific location"""
# Move to location
animations = []
for dot in self.encoder.dots:
coords = self.embedding.axes.coords_to_point(*location)
animations.append(dot.animate.move_to(coords))
move_animations = AnimationGroup(*animations, run_time=1.5)
# Follow up with remove animations
remove_animations = []
for dot in self.encoder.dots:
remove_animations.append(FadeOut(dot))
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
animation_group = Succession(move_animations, remove_animations, lag_ratio=1.0)
return animation_group
def make_dot_divergence_animation(self, location, run_time=3.0):
"""Makes dots diverge from the given location and move the decoder"""
animations = []
for node in self.decoder.layers[0].node_group:
new_dot = Dot(location, radius=self.dot_radius, color=RED)
per_node_succession = Succession(
Create(new_dot),
new_dot.animate.move_to(node.get_center()),
)
animations.append(per_node_succession)
animation_group = AnimationGroup(*animations)
return animation_group
def make_reset_vae_animation(self):
"""Resets the VAE to just the neural network"""
animation_group = AnimationGroup(
FadeOut(self.input_image),
FadeOut(self.output_image),
FadeOut(self.distribution_objects),
run_time=1.0
)
return animation_group
def make_forward_pass_animation(self, image_pair, run_time=1.5):
"""Overriden forward pass animation specific to a VAE"""
per_unit_runtime = run_time
# Setup images
self.input_image, self.output_image = self._construct_input_output_images(image_pair)
self.input_image.move_to(self.encoder.get_left())
self.input_image.shift(LEFT)
self.output_image.move_to(self.decoder.get_right())
self.output_image.shift(RIGHT*1.3)
# Make encoder forward pass
encoder_forward_pass = self.encoder.make_forward_propagation_animation(run_time=per_unit_runtime)
# Make red dot in embedding
mean = [1.0, 1.5]
mean_point = self.embedding.axes.coords_to_point(*mean)
std = [0.8, 1.2]
# Make the dot convergence animation
dot_convergence_animation = self.make_dot_convergence_animation(mean, run_time=per_unit_runtime)
encoding_succesion = Succession(
encoder_forward_pass,
dot_convergence_animation
)
# Make an ellipse centered at mean_point witAnimationGraph std outline
center_dot = Dot(mean_point, radius=self.dot_radius, color=RED)
ellipse = Ellipse(width=std[0], height=std[1], color=RED, fill_opacity=0.3, stroke_width=self.ellipse_stroke_width)
ellipse.move_to(mean_point)
self.distribution_objects = VGroup(
center_dot,
ellipse
)
# Make ellipse animation
ellipse_animation = AnimationGroup(
GrowFromCenter(center_dot),
GrowFromCenter(ellipse),
)
# Make the dot divergence animation
sampled_point = [0.51, 1.0]
divergence_point = self.embedding.axes.coords_to_point(*sampled_point)
dot_divergence_animation = self.make_dot_divergence_animation(divergence_point, run_time=per_unit_runtime)
# Make decoder foward pass
decoder_forward_pass = self.decoder.make_forward_propagation_animation(run_time=per_unit_runtime)
# Add the animations to the group
animation_group = AnimationGroup(
FadeIn(self.input_image),
encoding_succesion,
ellipse_animation,
dot_divergence_animation,
decoder_forward_pass,
FadeIn(self.output_image),
lag_ratio=1,
)
return animation_group
def make_interpolation_animation(self, interpolation_images, frame_rate=5):
"""Makes an animation interpolation"""
num_images = len(interpolation_images)
# Make madeup path
interpolation_latent_path = np.linspace([-0.7, -1.2], [1.2, 1.5], num=num_images)
# Make the path animation
first_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[0])
last_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[-1])
moving_dot = Dot(first_dot_location, radius=self.dot_radius, color=RED)
self.add(moving_dot)
animation_list = [Create(Line(first_dot_location, last_dot_location, color=RED), run_time=0.1*num_images)]
for image_index in range(num_images - 1):
next_index = image_index + 1
# Get path
next_point = interpolation_latent_path[next_index]
next_position = self.embedding.axes.coords_to_point(*next_point)
# Draw path from current point to next point
move_animation = moving_dot.animate(run_time=0.1*num_images).move_to(next_position)
animation_list.append(move_animation)
interpolation_animation = AnimationGroup(*animation_list)
# Make the images animation
animation_list = [Wait(0.5)]
for numpy_image in interpolation_images:
numpy_image = numpy_image[None, :, :]
manim_image = self._construct_image_mobject(numpy_image)
# Move the image to the correct location
manim_image.move_to(self.output_image)
# Add the image
animation_list.append(FadeIn(manim_image, run_time=0.1))
# Wait
# animation_list.append(Wait(1 / frame_rate))
# Remove the image
# animation_list.append(FadeOut(manim_image, run_time=0.1))
images_animation = AnimationGroup(*animation_list, lag_ratio=1.0)
# Combine the two into an AnimationGroup
animation_group = AnimationGroup(
interpolation_animation,
images_animation
)
return animation_group
class VariationalAutoencoder(VGroup):
def __init__(self):
embedding_layer = EmbeddingLayer()
image = Image.open('images/image.jpeg')
numpy_image = np.asarray(image)
# Make nn
neural_network = NeuralNetwork([
ImageLayer(numpy_image, height=1.4),
FeedForwardLayer(5),
FeedForwardLayer(3),
embedding_layer,
FeedForwardLayer(3),
FeedForwardLayer(5),
ImageLayer(numpy_image, height=1.4),
])
neural_network.scale(1.3)
self.play(Create(neural_network))
self.play(neural_network.make_forward_pass_animation(run_time=15))
class MNISTImageHandler():
"""Deals with loading serialized VAE mnist images from "autoencoder_models" """
def __init__(
self,
image_pairs_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/image_pairs.pkl"),
interpolations_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/interpolations.pkl")
):
self.image_pairs_file_path = image_pairs_file_path
self.interpolations_file_path = interpolations_file_path
self.image_pairs = []
self.interpolation_images = []
self.interpolation_latent_path = []
self.load_serialized_data()
def load_serialized_data(self):
with open(self.image_pairs_file_path, "rb") as f:
self.image_pairs = pickle.load(f)
with open(self.interpolations_file_path, "rb") as f:
self.interpolation_dict = pickle.load(f)
self.interpolation_images = self.interpolation_dict["interpolation_images"]
self.interpolation_latent_path = self.interpolation_dict["interpolation_path"]
"""
The VAE Scene for the twitter video.
"""
config.pixel_height = 720
config.pixel_width = 1280
config.frame_height = 5.0
config.frame_width = 5.0
# Set random seed so point distribution is constant
np.random.seed(1)
class VAEScene(Scene):
"""Scene object for a Variational Autoencoder and Autoencoder"""
def construct(self):
# Set Scene config
vae = VariationalAutoencoder()
mnist_image_handler = MNISTImageHandler()
image_pair = mnist_image_handler.image_pairs[3]
vae.move_to(ORIGIN)
vae.scale(1.3)
self.play(Create(vae), run_time=3)
# Make a forward pass animation
forward_pass_animation = vae.make_forward_pass_animation(image_pair)
self.play(forward_pass_animation)
# Remove the input and output images
reset_animation = vae.make_reset_vae_animation()
self.play(reset_animation)
# Interpolation animation
interpolation_images = mnist_image_handler.interpolation_images
interpolation_animation = vae.make_interpolation_animation(interpolation_images)
self.play(interpolation_animation)