mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-06-02 07:45:52 +08:00
326 lines
13 KiB
Python
326 lines
13 KiB
Python
"""Autoencoder Manim Visualizations
|
|
|
|
In this module I define Manim visualizations for Variational Autoencoders
|
|
and Traditional Autoencoders.
|
|
|
|
"""
|
|
from manim import *
|
|
import pickle
|
|
import numpy as np
|
|
import os
|
|
from PIL import Image
|
|
import manim_ml.neural_network as neural_network
|
|
from manim_ml.neural_network.embedding import EmbeddingLayer
|
|
from manim_ml.neural_network.feed_forward import FeedForwardLayer
|
|
from manim_ml.neural_network.image import ImageLayer
|
|
from manim_ml.neural_network.neural_network import NeuralNetwork
|
|
|
|
class VariationalAutoencoder(VGroup):
|
|
"""Variational Autoencoder Manim Visualization"""
|
|
|
|
def __init__(
|
|
self, encoder_nodes_per_layer=[5, 3], decoder_nodes_per_layer=[3, 5], point_color=BLUE,
|
|
dot_radius=0.05, ellipse_stroke_width=2.0, layer_spacing=0.5
|
|
):
|
|
super(VGroup, self).__init__()
|
|
self.encoder_nodes_per_layer = encoder_nodes_per_layer
|
|
self.decoder_nodes_per_layer = decoder_nodes_per_layer
|
|
self.point_color = point_color
|
|
self.dot_radius = dot_radius
|
|
self.layer_spacing = layer_spacing
|
|
self.ellipse_stroke_width = ellipse_stroke_width
|
|
# Make the VMobjects
|
|
self.encoder, self.decoder = self._construct_encoder_and_decoder()
|
|
self.embedding = self._construct_embedding()
|
|
# Setup the relative locations
|
|
self.embedding.move_to(self.encoder)
|
|
self.embedding.shift([1.4 * self.encoder.width, 0, 0])
|
|
self.decoder.move_to(self.embedding)
|
|
self.decoder.shift([self.decoder.width * 1.4, 0, 0])
|
|
# Add the objects to the VAE object
|
|
self.add(self.encoder)
|
|
self.add(self.decoder)
|
|
self.add(self.embedding)
|
|
|
|
def _construct_encoder_and_decoder(self):
|
|
"""Makes the VAE encoder and decoder"""
|
|
# Make the encoder
|
|
layer_node_count = self.encoder_nodes_per_layer
|
|
encoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
|
|
encoder.scale(1.2)
|
|
# Make the decoder
|
|
layer_node_count = self.decoder_nodes_per_layer
|
|
decoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
|
|
decoder.scale(1.2)
|
|
|
|
return encoder, decoder
|
|
|
|
def _construct_embedding(self):
|
|
"""Makes a Gaussian-like embedding"""
|
|
embedding = VGroup()
|
|
# Sample points from a Gaussian
|
|
num_points = 200
|
|
standard_deviation = [0.9, 0.9]
|
|
mean = [0, 0]
|
|
points = np.random.normal(mean, standard_deviation, size=(num_points, 2))
|
|
# Make an axes
|
|
embedding.axes = Axes(
|
|
x_range=[-3, 3],
|
|
y_range=[-3, 3],
|
|
x_length=2.2,
|
|
y_length=2.2,
|
|
tips=False,
|
|
)
|
|
# Add each point to the axes
|
|
self.point_dots = VGroup()
|
|
for point in points:
|
|
point_location = embedding.axes.coords_to_point(*point)
|
|
dot = Dot(point_location, color=self.point_color, radius=self.dot_radius/2)
|
|
self.point_dots.add(dot)
|
|
|
|
embedding.add(self.point_dots)
|
|
return embedding
|
|
|
|
def _construct_image_mobject(self, input_image, height=2.3):
|
|
"""Constructs an ImageMobject from a numpy grayscale image"""
|
|
# Convert image to rgb
|
|
input_image = np.repeat(input_image, 3, axis=0)
|
|
input_image = np.rollaxis(input_image, 0, start=3)
|
|
# Make the ImageMobject
|
|
image_mobject = ImageMobject(input_image, image_mode="RGB")
|
|
image_mobject.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
|
|
image_mobject.height = height
|
|
|
|
return image_mobject
|
|
|
|
def _construct_input_output_images(self, image_pair):
|
|
"""Places the input and output images for the AE"""
|
|
# Takes the image pair
|
|
# image_pair is assumed to be [2, x, y]
|
|
input_image = image_pair[0][None, :, :]
|
|
recon_image = image_pair[1][None, :, :]
|
|
# Make the image mobjects
|
|
input_image_object = self._construct_image_mobject(input_image)
|
|
recon_image_object = self._construct_image_mobject(recon_image)
|
|
|
|
return input_image_object, recon_image_object
|
|
|
|
def make_dot_convergence_animation(self, location, run_time=1.5):
|
|
"""Makes dots converge on a specific location"""
|
|
# Move to location
|
|
animations = []
|
|
for dot in self.encoder.dots:
|
|
coords = self.embedding.axes.coords_to_point(*location)
|
|
animations.append(dot.animate.move_to(coords))
|
|
move_animations = AnimationGroup(*animations, run_time=1.5)
|
|
# Follow up with remove animations
|
|
remove_animations = []
|
|
for dot in self.encoder.dots:
|
|
remove_animations.append(FadeOut(dot))
|
|
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
|
|
|
|
animation_group = Succession(move_animations, remove_animations, lag_ratio=1.0)
|
|
|
|
return animation_group
|
|
|
|
def make_dot_divergence_animation(self, location, run_time=3.0):
|
|
"""Makes dots diverge from the given location and move the decoder"""
|
|
animations = []
|
|
for node in self.decoder.layers[0].node_group:
|
|
new_dot = Dot(location, radius=self.dot_radius, color=RED)
|
|
per_node_succession = Succession(
|
|
Create(new_dot),
|
|
new_dot.animate.move_to(node.get_center()),
|
|
)
|
|
animations.append(per_node_succession)
|
|
|
|
animation_group = AnimationGroup(*animations)
|
|
return animation_group
|
|
|
|
def make_reset_vae_animation(self):
|
|
"""Resets the VAE to just the neural network"""
|
|
animation_group = AnimationGroup(
|
|
FadeOut(self.input_image),
|
|
FadeOut(self.output_image),
|
|
FadeOut(self.distribution_objects),
|
|
run_time=1.0
|
|
)
|
|
|
|
return animation_group
|
|
|
|
def make_forward_pass_animation(self, image_pair, run_time=1.5):
|
|
"""Overriden forward pass animation specific to a VAE"""
|
|
per_unit_runtime = run_time
|
|
# Setup images
|
|
self.input_image, self.output_image = self._construct_input_output_images(image_pair)
|
|
self.input_image.move_to(self.encoder.get_left())
|
|
self.input_image.shift(LEFT)
|
|
self.output_image.move_to(self.decoder.get_right())
|
|
self.output_image.shift(RIGHT*1.3)
|
|
# Make encoder forward pass
|
|
encoder_forward_pass = self.encoder.make_forward_propagation_animation(run_time=per_unit_runtime)
|
|
# Make red dot in embedding
|
|
mean = [1.0, 1.5]
|
|
mean_point = self.embedding.axes.coords_to_point(*mean)
|
|
std = [0.8, 1.2]
|
|
# Make the dot convergence animation
|
|
dot_convergence_animation = self.make_dot_convergence_animation(mean, run_time=per_unit_runtime)
|
|
encoding_succesion = Succession(
|
|
encoder_forward_pass,
|
|
dot_convergence_animation
|
|
)
|
|
# Make an ellipse centered at mean_point witAnimationGraph std outline
|
|
center_dot = Dot(mean_point, radius=self.dot_radius, color=RED)
|
|
ellipse = Ellipse(width=std[0], height=std[1], color=RED, fill_opacity=0.3, stroke_width=self.ellipse_stroke_width)
|
|
ellipse.move_to(mean_point)
|
|
self.distribution_objects = VGroup(
|
|
center_dot,
|
|
ellipse
|
|
)
|
|
# Make ellipse animation
|
|
ellipse_animation = AnimationGroup(
|
|
GrowFromCenter(center_dot),
|
|
GrowFromCenter(ellipse),
|
|
)
|
|
# Make the dot divergence animation
|
|
sampled_point = [0.51, 1.0]
|
|
divergence_point = self.embedding.axes.coords_to_point(*sampled_point)
|
|
dot_divergence_animation = self.make_dot_divergence_animation(divergence_point, run_time=per_unit_runtime)
|
|
# Make decoder foward pass
|
|
decoder_forward_pass = self.decoder.make_forward_propagation_animation(run_time=per_unit_runtime)
|
|
# Add the animations to the group
|
|
animation_group = AnimationGroup(
|
|
FadeIn(self.input_image),
|
|
encoding_succesion,
|
|
ellipse_animation,
|
|
dot_divergence_animation,
|
|
decoder_forward_pass,
|
|
FadeIn(self.output_image),
|
|
lag_ratio=1,
|
|
)
|
|
|
|
return animation_group
|
|
|
|
def make_interpolation_animation(self, interpolation_images, frame_rate=5):
|
|
"""Makes an animation interpolation"""
|
|
num_images = len(interpolation_images)
|
|
# Make madeup path
|
|
interpolation_latent_path = np.linspace([-0.7, -1.2], [1.2, 1.5], num=num_images)
|
|
# Make the path animation
|
|
first_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[0])
|
|
last_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[-1])
|
|
moving_dot = Dot(first_dot_location, radius=self.dot_radius, color=RED)
|
|
self.add(moving_dot)
|
|
animation_list = [Create(Line(first_dot_location, last_dot_location, color=RED), run_time=0.1*num_images)]
|
|
for image_index in range(num_images - 1):
|
|
next_index = image_index + 1
|
|
# Get path
|
|
next_point = interpolation_latent_path[next_index]
|
|
next_position = self.embedding.axes.coords_to_point(*next_point)
|
|
# Draw path from current point to next point
|
|
move_animation = moving_dot.animate(run_time=0.1*num_images).move_to(next_position)
|
|
animation_list.append(move_animation)
|
|
|
|
interpolation_animation = AnimationGroup(*animation_list)
|
|
# Make the images animation
|
|
animation_list = [Wait(0.5)]
|
|
for numpy_image in interpolation_images:
|
|
numpy_image = numpy_image[None, :, :]
|
|
manim_image = self._construct_image_mobject(numpy_image)
|
|
# Move the image to the correct location
|
|
manim_image.move_to(self.output_image)
|
|
# Add the image
|
|
animation_list.append(FadeIn(manim_image, run_time=0.1))
|
|
# Wait
|
|
# animation_list.append(Wait(1 / frame_rate))
|
|
# Remove the image
|
|
# animation_list.append(FadeOut(manim_image, run_time=0.1))
|
|
images_animation = AnimationGroup(*animation_list, lag_ratio=1.0)
|
|
# Combine the two into an AnimationGroup
|
|
animation_group = AnimationGroup(
|
|
interpolation_animation,
|
|
images_animation
|
|
)
|
|
|
|
return animation_group
|
|
|
|
class VariationalAutoencoder(VGroup):
|
|
|
|
def __init__(self):
|
|
embedding_layer = EmbeddingLayer()
|
|
|
|
image = Image.open('images/image.jpeg')
|
|
numpy_image = np.asarray(image)
|
|
# Make nn
|
|
neural_network = NeuralNetwork([
|
|
ImageLayer(numpy_image, height=1.4),
|
|
FeedForwardLayer(5),
|
|
FeedForwardLayer(3),
|
|
embedding_layer,
|
|
FeedForwardLayer(3),
|
|
FeedForwardLayer(5),
|
|
ImageLayer(numpy_image, height=1.4),
|
|
])
|
|
|
|
neural_network.scale(1.3)
|
|
|
|
self.play(Create(neural_network))
|
|
self.play(neural_network.make_forward_pass_animation(run_time=15))
|
|
|
|
class MNISTImageHandler():
|
|
"""Deals with loading serialized VAE mnist images from "autoencoder_models" """
|
|
|
|
def __init__(
|
|
self,
|
|
image_pairs_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/image_pairs.pkl"),
|
|
interpolations_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/interpolations.pkl")
|
|
):
|
|
self.image_pairs_file_path = image_pairs_file_path
|
|
self.interpolations_file_path = interpolations_file_path
|
|
|
|
self.image_pairs = []
|
|
self.interpolation_images = []
|
|
self.interpolation_latent_path = []
|
|
|
|
self.load_serialized_data()
|
|
|
|
def load_serialized_data(self):
|
|
with open(self.image_pairs_file_path, "rb") as f:
|
|
self.image_pairs = pickle.load(f)
|
|
|
|
with open(self.interpolations_file_path, "rb") as f:
|
|
self.interpolation_dict = pickle.load(f)
|
|
self.interpolation_images = self.interpolation_dict["interpolation_images"]
|
|
self.interpolation_latent_path = self.interpolation_dict["interpolation_path"]
|
|
|
|
"""
|
|
The VAE Scene for the twitter video.
|
|
"""
|
|
config.pixel_height = 720
|
|
config.pixel_width = 1280
|
|
config.frame_height = 5.0
|
|
config.frame_width = 5.0
|
|
# Set random seed so point distribution is constant
|
|
np.random.seed(1)
|
|
|
|
class VAEScene(Scene):
|
|
"""Scene object for a Variational Autoencoder and Autoencoder"""
|
|
|
|
def construct(self):
|
|
# Set Scene config
|
|
vae = VariationalAutoencoder()
|
|
mnist_image_handler = MNISTImageHandler()
|
|
image_pair = mnist_image_handler.image_pairs[3]
|
|
vae.move_to(ORIGIN)
|
|
vae.scale(1.3)
|
|
self.play(Create(vae), run_time=3)
|
|
# Make a forward pass animation
|
|
forward_pass_animation = vae.make_forward_pass_animation(image_pair)
|
|
self.play(forward_pass_animation)
|
|
# Remove the input and output images
|
|
reset_animation = vae.make_reset_vae_animation()
|
|
self.play(reset_animation)
|
|
# Interpolation animation
|
|
interpolation_images = mnist_image_handler.interpolation_images
|
|
interpolation_animation = vae.make_interpolation_animation(interpolation_images)
|
|
self.play(interpolation_animation) |