Files
ManimML/tests/test_max_pool.py
2023-02-01 22:33:42 -05:00

63 lines
2.0 KiB
Python

from manim import *
from PIL import Image
import numpy as np
from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.layers.max_pooling_2d import MaxPooling2DLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 1900
config.frame_height = 6.0
config.frame_width = 6.0
class CombinedScene(ThreeDScene):
def construct(self):
image = Image.open("../assets/mnist/digit.jpeg")
numpy_image = np.asarray(image)
# Make nn
nn = NeuralNetwork(
[
ImageLayer(numpy_image, height=1.5),
Convolutional2DLayer(1, 8, filter_spacing=0.32),
Convolutional2DLayer(3, 6, 3, filter_spacing=0.32),
MaxPooling2DLayer(kernel_size=2),
Convolutional2DLayer(5, 2, 2, filter_spacing=0.32),
],
layer_spacing=0.25,
)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
self.wait(5)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)
class SmallNetwork(ThreeDScene):
def construct(self):
image = Image.open("../assets/mnist/digit.jpeg")
numpy_image = np.asarray(image)
# Make nn
nn = NeuralNetwork(
[
ImageLayer(numpy_image, height=1.5),
Convolutional2DLayer(1, 8, filter_spacing=0.32),
MaxPooling2DLayer(kernel_size=2),
],
layer_spacing=0.25,
)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)