Files
ManimML/tests/test_convolutional_2d_layer.py
2023-02-01 22:33:42 -05:00

80 lines
2.5 KiB
Python

from manim import *
from PIL import Image
from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
class SingleConvolutionalLayerScene(ThreeDScene):
def construct(self):
# Make nn
layers = [Convolutional2DLayer(3, 4)]
nn = NeuralNetwork(layers)
nn.scale(1.3)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
self.set_camera_orientation(
phi=280 * DEGREES, theta=-10 * DEGREES, gamma=90 * DEGREES
)
# self.play(nn.make_forward_pass_animation(run_time=5))
class Simple3DConvScene(ThreeDScene):
def construct(self):
"""
TODO
- [X] Make grid lines for the CNN filters
- [ ] Make Scanning filter effect
- [ ] Have filter box go accross each input feature map
- [ ] Make filter lines effect
- [ ] Make flowing animation down filter lines
"""
# Make nn
layers = [
Convolutional2DLayer(num_feature_maps=1, feature_map_size=3, filter_size=3),
Convolutional2DLayer(num_feature_maps=1, feature_map_size=3, filter_size=3),
]
nn = NeuralNetwork(layers)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
# self.set_camera_orientation(phi=280*DEGREES, theta=-10*DEGREES, gamma=90*DEGREES)
self.play(nn.make_forward_pass_animation(run_time=30))
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 1900
config.frame_height = 6.0
config.frame_width = 6.0
class CombinedScene(ThreeDScene):
def construct(self):
image = Image.open("../assets/mnist/digit.jpeg")
numpy_image = np.asarray(image)
# Make nn
nn = NeuralNetwork(
[
ImageLayer(numpy_image, height=1.5),
Convolutional2DLayer(1, 7, filter_spacing=0.32),
Convolutional2DLayer(3, 5, 3, filter_spacing=0.32),
Convolutional2DLayer(5, 3, 3, filter_spacing=0.18),
FeedForwardLayer(3),
FeedForwardLayer(3),
],
layer_spacing=0.25,
)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)