Files
ManimML/examples/translation_equivariance/translation_equivariance.py

46 lines
1.5 KiB
Python

from manim import *
from PIL import Image
from manim_ml.neural_network.layers.convolutional3d import Convolutional3DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.layers.parent_layers import ThreeDLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 800
config.frame_height = 6.0
config.frame_width = 6.0
class CombinedScene(ThreeDScene):
def construct(self):
image = Image.open("../../assets/doggo.jpeg")
numpy_image = np.asarray(image)
# Rotate the Three D layer position
ThreeDLayer.rotation_angle = 15 * DEGREES
ThreeDLayer.rotation_axis = [1, -1.0, 0]
# Make nn
nn = NeuralNetwork(
[
ImageLayer(numpy_image, height=1.5),
Convolutional3DLayer(1, 7, 7, 3, 3, filter_spacing=0.32),
Convolutional3DLayer(3, 5, 5, 1, 1, filter_spacing=0.18),
],
layer_spacing=0.25,
layout_direction="top_to_bottom",
)
# Center the nn
nn.move_to(ORIGIN)
nn.scale(1.5)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False,
all_filters_at_once=False,
highlight_active_feature_map=True,
)
self.wait(1)
self.play(forward_pass)