from manim import * from manim_ml.neural_network.layers.image import ImageLayer import numpy as np from PIL import Image from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer from manim_ml.neural_network.neural_network import NeuralNetwork ROOT_DIR = Path(__file__).parents[2] # Make the specific scene config.pixel_height = 1200 config.pixel_width = 1900 config.frame_height = 6.0 config.frame_width = 6.0 def make_code_snippet(): code_str = """ # Make nn nn = NeuralNetwork([ ImageLayer(numpy_image), Convolutional2DLayer(1, 6, 1, padding=1), Convolutional2DLayer(3, 6, 3), FeedForwardLayer(3), FeedForwardLayer(1), ]) # Play animation self.play(nn.make_forward_pass_animation()) """ code = Code( code=code_str, tab_width=4, background_stroke_width=1, background_stroke_color=WHITE, insert_line_no=False, style="monokai", # background="window", language="py", ) code.scale(0.38) return code class CombinedScene(ThreeDScene): def construct(self): # Make nn image = Image.open(ROOT_DIR / "assets/mnist/digit.jpeg") numpy_image = np.asarray(image) # Make nn nn = NeuralNetwork( [ ImageLayer(numpy_image, height=1.5), Convolutional2DLayer( num_feature_maps=1, feature_map_size=6, padding=1, padding_dashed=True, ), Convolutional2DLayer( num_feature_maps=3, feature_map_size=6, filter_size=3, padding=0, padding_dashed=False, ), FeedForwardLayer(3), FeedForwardLayer(1), ], layer_spacing=0.25, ) # Center the nn self.add(nn) code = make_code_snippet() code.next_to(nn, DOWN) self.add(code) Group(code, nn).move_to(ORIGIN) # Play animation forward_pass = nn.make_forward_pass_animation() self.wait(1) self.play(forward_pass, run_time=20)