Finished oracle guidance video. Integrated various changes necessary to complete this.

This commit is contained in:
Alec Helbling
2022-04-28 01:37:52 -04:00
parent 95a36eb234
commit 9310b48c56
38 changed files with 1039 additions and 157 deletions

View File

@ -5,43 +5,60 @@ import math
class GaussianDistribution(VGroup):
"""Object for drawing a Gaussian distribution"""
def __init__(self, axes, mean=None, cov=None, dist_theme="gaussian", **kwargs):
def __init__(self, axes, mean=None, cov=None, dist_theme="gaussian", color=ORANGE, **kwargs):
super(VGroup, self).__init__(**kwargs)
self.axes = axes
self.mean = mean
self.cov = cov
self.dist_theme = dist_theme
self.color = color
if mean is None:
self.mean = np.array([0.0, 0.0])
if cov is None:
self.cov = np.array([[1, 0], [0, 1]])
# Make the Gaussian
if self.dist_theme is "gaussian":
self.ellipses = self.construct_gaussian_distribution(self.mean, self.cov)
self.ellipses = self.construct_gaussian_distribution(self.mean, self.cov, color=self.color)
self.add(self.ellipses)
elif self.dist_theme is "ellipse":
self.ellipses = self.construct_simple_gaussian_ellipse(self.mean, self.cov)
self.ellipses = self.construct_simple_gaussian_ellipse(self.mean, self.cov, color=self.color)
self.add(self.ellipses)
else:
raise Exception(f"Uncrecognized distribution theme: {self.dist_theme}")
"""
@override_animation(Create)
def _create_gaussian_distribution(self):
return Create(self.ellipses)
return Create(self)
"""
def compute_covariance_rotation_and_scale(self, covariance):
# Get the eigenvectors and eigenvalues
eigenvalues, eigenvectors = np.linalg.eig(covariance)
y, x = eigenvectors[0, 1], eigenvectors[0, 0]
center_location = np.array([y, x, 0])
center_location = self.axes.coords_to_point(*center_location)
angle = math.atan(x / y) # x over y to denote the angle between y axis and vector
# Calculate the width and height
height = np.abs(eigenvalues[0])
width = np.abs(eigenvalues[1])
shape_coord = np.array([width, height, 0])
shape_coord = self.axes.coords_to_point(*shape_coord)
width = shape_coord[0]
height = shape_coord[1]
def eigsorted(cov):
'''
Eigenvalues and eigenvectors of the covariance matrix.
'''
vals, vecs = np.linalg.eigh(cov)
order = vals.argsort()[::-1]
return vals[order], vecs[:, order]
def cov_ellipse(cov, nstd):
"""
Source: http://stackoverflow.com/a/12321306/1391441
"""
vals, vecs = eigsorted(cov)
theta = np.degrees(np.arctan2(*vecs[:, 0][::-1]))
# Width and height are "full" widths, not radius
width, height = 2 * nstd * np.sqrt(vals)
return width, height, theta
width, height, angle = cov_ellipse(covariance, 1)
scale_factor = np.abs(self.axes.x_range[0] - self.axes.x_range[1]) / self.axes.x_length
width /= scale_factor
height /= scale_factor
return angle, width, height
def construct_gaussian_distribution(self, mean, covariance, color=ORANGE,
@ -73,28 +90,22 @@ class GaussianDistribution(VGroup):
def construct_simple_gaussian_ellipse(self, mean, covariance, color=ORANGE):
"""Returns a 2d Gaussian distribution object with given mean and covariance"""
# map mean and covariance to frame coordinates
# Map mean and covariance to frame coordinates
mean = self.axes.coords_to_point(*mean)
# Figure out the scale and angle of rotation
# TODO fix this
# rotation, width, height = self.compute_covariance_rotation_and_scale(covariance)
mean = np.array([0, 0, 0])
mean = self.axes.coords_to_point(*mean)
rotation = 0.0
angle, width, height = self.compute_covariance_rotation_and_scale(covariance)
# Make covariance ellipses
opacity = 0.0
ellipses = VGroup()
opacity = 0.2
opacity = 0.4
ellipse = Ellipse(
width=0.6,
height=0.6,
width=width,
height=height,
color=color,
fill_opacity=opacity,
stroke_width=2.0
stroke_width=1.0
)
ellipse.move_to(mean)
ellipse.rotate(rotation)
ellipse.rotate(angle)
ellipses.add(ellipse)
ellipses.set_z_index(3)
return ellipses
return ellipses