Added padding.

Fixed a bug with ImageLayerToConvolutional2D

Padding example
This commit is contained in:
Alec Helbling
2023-01-31 23:04:23 -05:00
parent 60bd02b22f
commit 4b06ce1622
20 changed files with 445 additions and 103 deletions

View File

@ -72,8 +72,6 @@ class CombinedScene(ThreeDScene):
# group.move_to(ORIGIN)
nn.move_to(ORIGIN)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False, all_filters_at_once=False
)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)

View File

@ -65,8 +65,6 @@ class CombinedScene(ThreeDScene):
self.add(code)
self.wait(5)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False, all_filters_at_once=False
)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)

View File

@ -68,9 +68,6 @@ class CombinedScene(ThreeDScene):
group = Group(nn, code)
group.move_to(ORIGIN)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False,
all_filters_at_once=False,
)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)

View File

@ -0,0 +1,82 @@
from manim import *
from manim_ml.neural_network.layers.image import ImageLayer
import numpy as np
from PIL import Image
from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
ROOT_DIR = Path(__file__).parents[2]
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 1900
config.frame_height = 6.0
config.frame_width = 6.0
def make_code_snippet():
code_str = """
# Make nn
nn = NeuralNetwork([
ImageLayer(numpy_image),
Convolutional2DLayer(1, 6, 1, padding=1),
Convolutional2DLayer(3, 6, 3),
FeedForwardLayer(3),
FeedForwardLayer(1),
])
# Play animation
self.play(nn.make_forward_pass_animation())
"""
code = Code(
code=code_str,
tab_width=4,
background_stroke_width=1,
background_stroke_color=WHITE,
insert_line_no=False,
style="monokai",
# background="window",
language="py",
)
code.scale(0.38)
return code
class CombinedScene(ThreeDScene):
def construct(self):
# Make nn
image = Image.open(ROOT_DIR / "assets/mnist/digit.jpeg")
numpy_image = np.asarray(image)
# Make nn
nn = NeuralNetwork([
ImageLayer(numpy_image, height=1.5),
Convolutional2DLayer(
num_feature_maps=1,
feature_map_size=6,
padding=1,
padding_dashed=True
),
Convolutional2DLayer(
num_feature_maps=3,
feature_map_size=6,
filter_size=3,
padding=0,
padding_dashed=False
),
FeedForwardLayer(3),
FeedForwardLayer(1),
],
layer_spacing=0.25,
)
# Center the nn
self.add(nn)
code = make_code_snippet()
code.next_to(nn, DOWN)
self.add(code)
Group(code, nn).move_to(ORIGIN)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass, run_time=20)

53
examples/lenet/lenet.py Normal file
View File

@ -0,0 +1,53 @@
from pathlib import Path
from manim import *
from PIL import Image
import numpy as np
from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.image import ImageLayer
from manim_ml.neural_network.layers.max_pooling_2d import MaxPooling2DLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 1900
config.frame_height = 20.0
config.frame_width = 20.0
ROOT_DIR = Path(__file__).parents[2]
class CombinedScene(ThreeDScene):
def construct(self):
image = Image.open(ROOT_DIR / "assets/mnist/digit.jpeg")
numpy_image = np.asarray(image)
# Make nn
nn = NeuralNetwork([
ImageLayer(numpy_image, height=4.5),
Convolutional2DLayer(1, 28),
Convolutional2DLayer(6, 28, 5),
MaxPooling2DLayer(kernel_size=2),
Convolutional2DLayer(16, 10, 5),
MaxPooling2DLayer(kernel_size=2),
FeedForwardLayer(8),
FeedForwardLayer(3),
FeedForwardLayer(2),
],
layer_spacing=0.25,
)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Make code snippet
# code = make_code_snippet()
# code.next_to(nn, DOWN)
# self.add(code)
# Group it all
# group = Group(nn, code)
# group.move_to(ORIGIN)
nn.move_to(ORIGIN)
# Play animation
# forward_pass = nn.make_forward_pass_animation()
# self.wait(1)
# self.play(forward_pass)

View File

@ -37,8 +37,6 @@ class CombinedScene(ThreeDScene):
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False,
all_filters_at_once=False,
highlight_active_feature_map=True,
)
self.wait(1)

View File

@ -14,12 +14,13 @@ class GriddedRectangle(VGroup):
close_new_points=True,
grid_xstep=None,
grid_ystep=None,
grid_stroke_width=0.0, # DEFAULT_STROKE_WIDTH/2,
grid_stroke_width=0.0, # DEFAULT_STROKE_WIDTH/2,
grid_stroke_color=ORANGE,
grid_stroke_opacity=1.0,
stroke_width=2.0,
fill_opacity=0.2,
show_grid_lines=False,
dotted_lines=False,
**kwargs
):
super().__init__()
@ -37,16 +38,43 @@ class GriddedRectangle(VGroup):
self.show_grid_lines = show_grid_lines
self.untransformed_width = width
self.untransformed_height = height
self.dotted_lines = dotted_lines
# Make rectangle
self.rectangle = Rectangle(
width=width,
height=height,
color=color,
stroke_width=stroke_width,
fill_color=color,
fill_opacity=fill_opacity,
shade_in_3d=True
)
if self.dotted_lines:
no_border_rectangle = Rectangle(
width=width,
height=height,
color=color,
fill_color=color,
stroke_opacity=0.0,
fill_opacity=fill_opacity,
shade_in_3d=True
)
self.rectangle = no_border_rectangle
border_rectangle = Rectangle(
width=width,
height=height,
color=color,
fill_color=color,
fill_opacity=fill_opacity,
shade_in_3d=True,
stroke_width=stroke_width
)
self.dotted_lines = DashedVMobject(
border_rectangle,
num_dashes=int((width + height) / 2) * 20,
)
self.add(self.dotted_lines)
else:
self.rectangle = Rectangle(
width=width,
height=height,
color=color,
stroke_width=stroke_width,
fill_color=color,
fill_opacity=fill_opacity,
shade_in_3d=True
)
self.add(self.rectangle)
# Make grid lines
grid_lines = self.make_grid_lines()

View File

@ -12,6 +12,89 @@ from manim_ml.neural_network.layers.parent_layers import (
)
from manim_ml.gridded_rectangle import GriddedRectangle
class FeatureMap(VGroup):
"""Class for making a feature map"""
def __init__(
self,
color=ORANGE,
feature_map_size=None,
fill_color=ORANGE,
fill_opacity=0.2,
cell_width=0.2,
padding=(0, 0),
stroke_width=2.0,
show_grid_lines=False,
padding_dashed=False
):
super().__init__()
self.color = color
self.feature_map_size = feature_map_size
self.fill_color = fill_color
self.fill_opacity = fill_opacity
self.cell_width = cell_width
self.padding = padding
self.stroke_width = stroke_width
self.show_grid_lines = show_grid_lines
self.padding_dashed = padding_dashed
# Check if we have non-zero padding
if padding[0] > 0 or padding[1] > 0:
# Make the exterior rectangle dashed
width_with_padding = (self.feature_map_size[0] + self.padding[0] * 2) * self.cell_width
height_with_padding = (self.feature_map_size[1] + self.padding[1] * 2) * self.cell_width
self.untransformed_width = width_with_padding
self.untransformed_height = height_with_padding
self.exterior_rectangle = GriddedRectangle(
color=self.color,
width=width_with_padding,
height=height_with_padding,
fill_color=self.color,
fill_opacity=self.fill_opacity,
stroke_color=self.color,
stroke_width=self.stroke_width,
grid_xstep=self.cell_width,
grid_ystep=self.cell_width,
grid_stroke_width=self.stroke_width / 2,
grid_stroke_color=self.color,
show_grid_lines=self.show_grid_lines,
dotted_lines=self.padding_dashed
)
self.add(self.exterior_rectangle)
# Add an interior rectangle with no fill color
self.interior_rectangle = GriddedRectangle(
color=self.color,
fill_opacity=0.0,
width=self.feature_map_size[0] * self.cell_width,
height=self.feature_map_size[1] * self.cell_width,
stroke_width=self.stroke_width
)
self.add(self.interior_rectangle)
else:
# Just make an exterior rectangle with no dashes.
self.untransformed_height = self.feature_map_size[1] * self.cell_width,
self.untransformed_width = self.feature_map_size[0] * self.cell_width,
# Make the exterior rectangle
self.exterior_rectangle = GriddedRectangle(
color=self.color,
height=self.feature_map_size[1] * self.cell_width,
width=self.feature_map_size[0] * self.cell_width,
fill_color=self.color,
fill_opacity=self.fill_opacity,
stroke_color=self.color,
stroke_width=self.stroke_width,
grid_xstep=self.cell_width,
grid_ystep=self.cell_width,
grid_stroke_width=self.stroke_width / 2,
grid_stroke_color=self.color,
show_grid_lines=self.show_grid_lines,
)
self.add(self.exterior_rectangle)
def get_corners_dict(self):
"""Returns a dictionary of the corners"""
# Sort points through clockwise rotation of a vector in the xy plane
return self.exterior_rectangle.get_corners_dict()
class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
"""Handles rendering a convolutional layer for a nn"""
@ -24,33 +107,48 @@ class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
cell_width=0.2,
filter_spacing=0.1,
color=BLUE,
pulse_color=ORANGE,
show_grid_lines=False,
active_color=ORANGE,
filter_color=ORANGE,
show_grid_lines=False,
fill_opacity=0.3,
stride=1,
stroke_width=2.0,
activation_function=None,
padding=0,
padding_dashed=True,
**kwargs,
):
super().__init__(**kwargs)
self.num_feature_maps = num_feature_maps
self.filter_color = filter_color
if isinstance(padding, tuple):
assert len(padding) == 2
self.padding = padding
elif isinstance(padding, int):
self.padding = (padding, padding)
else:
raise Exception(f"Unrecognized type for padding: {type(padding)}")
if isinstance(feature_map_size, int):
self.feature_map_size = (feature_map_size, feature_map_size)
else:
self.feature_map_size = feature_map_size
if isinstance(filter_size, int):
self.filter_size = (filter_size, filter_size)
else:
self.filter_size = filter_size
self.cell_width = cell_width
self.filter_spacing = filter_spacing
self.color = color
self.pulse_color = pulse_color
self.active_color = active_color
self.stride = stride
self.stroke_width = stroke_width
self.show_grid_lines = show_grid_lines
self.activation_function = activation_function
self.fill_opacity = fill_opacity
self.padding_dashed = padding_dashed
def construct_layer(
self,
@ -92,12 +190,14 @@ class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
# Draw rectangles that are filled in with opacity
feature_maps = []
for filter_index in range(self.num_feature_maps):
rectangle = GriddedRectangle(
# Check if we need to add padding
"""
feature_map = GriddedRectangle(
color=self.color,
height=self.feature_map_size[1] * self.cell_width,
width=self.feature_map_size[0] * self.cell_width,
fill_color=self.color,
fill_opacity=0.2,
fill_opacity=self.fill_opacity,
stroke_color=self.color,
stroke_width=self.stroke_width,
grid_xstep=self.cell_width,
@ -106,52 +206,44 @@ class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
grid_stroke_color=self.color,
show_grid_lines=self.show_grid_lines,
)
"""
# feature_map = GriddedRectangle()
feature_map = FeatureMap(
color=self.color,
feature_map_size=self.feature_map_size,
cell_width=self.cell_width,
fill_color=self.color,
fill_opacity=self.fill_opacity,
padding=self.padding,
padding_dashed=self.padding_dashed
)
# Move the feature map
rectangle.move_to([0, 0, filter_index * self.filter_spacing])
feature_map.move_to([0, 0, filter_index * self.filter_spacing])
# rectangle.set_z_index(4)
feature_maps.append(rectangle)
feature_maps.append(feature_map)
return VGroup(*feature_maps)
def highlight_and_unhighlight_feature_maps(self):
"""Highlights then unhighlights feature maps"""
return Succession(
ApplyMethod(self.feature_maps.set_color, self.pulse_color),
ApplyMethod(self.feature_maps.set_color, self.active_color),
ApplyMethod(self.feature_maps.set_color, self.color),
)
def make_forward_pass_animation(
self, run_time=5, corner_pulses=False, layer_args={}, **kwargs
self, run_time=5, layer_args={}, **kwargs
):
"""Convolution forward pass animation"""
# Note: most of this animation is done in the Convolution3DToConvolution3D layer
if corner_pulses:
raise NotImplementedError()
passing_flashes = []
for line in self.corner_lines:
pulse = ShowPassingFlash(
line.copy().set_color(self.pulse_color).set_stroke(opacity=1.0),
time_width=0.5,
run_time=run_time,
rate_func=rate_functions.linear,
)
passing_flashes.append(pulse)
# per_filter_run_time = run_time / len(self.feature_maps)
# Make animation group
if not self.activation_function is None:
animation_group = AnimationGroup(
*passing_flashes,
# filter_flashes
self.activation_function.make_evaluate_animation(),
self.highlight_and_unhighlight_feature_maps(),
lag_ratio=0.0,
)
else:
if not self.activation_function is None:
animation_group = AnimationGroup(
self.activation_function.make_evaluate_animation(),
self.highlight_and_unhighlight_feature_maps(),
lag_ratio=0.0,
)
else:
animation_group = AnimationGroup()
animation_group = AnimationGroup()
return animation_group

View File

@ -7,7 +7,6 @@ from manim_ml.gridded_rectangle import GriddedRectangle
from manim.utils.space_ops import rotation_matrix
def get_rotated_shift_vectors(input_layer, normalized=False):
"""Rotates the shift vectors"""
# Make base shift vectors
@ -25,7 +24,6 @@ def get_rotated_shift_vectors(input_layer, normalized=False):
return right_shift, down_shift
class Filters(VGroup):
"""Group for showing a collection of filters connecting two layers"""
@ -109,6 +107,8 @@ class Filters(VGroup):
rectangle_width = self.output_layer.cell_width
rectangle_height = self.output_layer.cell_width
filter_color = self.output_layer.filter_color
right_shift, down_shift = get_rotated_shift_vectors(self.input_layer)
left_shift = -1 * right_shift
for index, feature_map in enumerate(self.output_layer.feature_maps):
# Make sure current feature map is the right filter
@ -142,6 +142,13 @@ class Filters(VGroup):
buff=0.0
# aligned_edge=feature_map.get_corners_dict()["top_left"].get_center()
)
# Shift based on the amount of output layer padding
rectangle.shift(
self.output_layer.padding[0] * right_shift,
)
rectangle.shift(
self.output_layer.padding[1] * down_shift,
)
rectangles.append(rectangle)
feature_map_rectangles = VGroup(*rectangles)
@ -280,7 +287,7 @@ class Convolutional2DToConvolutional2D(ConnectiveLayer, ThreeDLayer):
color=ORANGE,
filter_opacity=0.3,
line_color=ORANGE,
pulse_color=ORANGE,
active_color=ORANGE,
cell_width=0.2,
show_grid_lines=True,
highlight_color=ORANGE,
@ -299,10 +306,11 @@ class Convolutional2DToConvolutional2D(ConnectiveLayer, ThreeDLayer):
self.num_output_feature_maps = self.output_layer.num_feature_maps
self.cell_width = self.output_layer.cell_width
self.stride = self.output_layer.stride
self.padding = self.input_layer.padding
self.filter_opacity = filter_opacity
self.cell_width = cell_width
self.line_color = line_color
self.pulse_color = pulse_color
self.active_color = active_color
self.show_grid_lines = show_grid_lines
self.highlight_color = highlight_color
@ -333,9 +341,11 @@ class Convolutional2DToConvolutional2D(ConnectiveLayer, ThreeDLayer):
# Make the animation
num_y_moves = int(
(self.feature_map_size[1] - self.filter_size[1]) / self.stride
+ self.padding[1] * 2
)
num_x_moves = int(
(self.feature_map_size[0] - self.filter_size[0]) / self.stride
+ self.padding[0] * 2
)
for y_move in range(num_y_moves):
# Go right num_x_moves
@ -401,9 +411,11 @@ class Convolutional2DToConvolutional2D(ConnectiveLayer, ThreeDLayer):
# Make the animation
num_y_moves = int(
(self.feature_map_size[1] - self.filter_size[1]) / self.stride
+ self.padding[1] * 2
)
num_x_moves = int(
(self.feature_map_size[0] - self.filter_size[0]) / self.stride
+ self.padding[0] * 2
)
for y_move in range(num_y_moves):
# Go right num_x_moves
@ -434,7 +446,10 @@ class Convolutional2DToConvolutional2D(ConnectiveLayer, ThreeDLayer):
# Do last row move right
for x_move in range(num_x_moves):
# Shift right
shift_animation = ApplyMethod(filters.shift, self.stride * right_shift)
shift_animation = ApplyMethod(
filters.shift,
self.stride * right_shift
)
# shift_animation = self.animate.shift(right_shift)
animations.append(shift_animation)
# Remove the filters
@ -445,14 +460,18 @@ class Convolutional2DToConvolutional2D(ConnectiveLayer, ThreeDLayer):
# Change the output feature map colors
change_color_animations = []
change_color_animations.append(
ApplyMethod(feature_map.set_color, original_feature_map_color)
ApplyMethod(
feature_map.set_color,
original_feature_map_color
)
)
# Change the input feature map colors
input_feature_maps = self.input_layer.feature_maps
for input_feature_map in input_feature_maps:
change_color_animations.append(
ApplyMethod(
input_feature_map.set_color, original_feature_map_color
input_feature_map.set_color,
original_feature_map_color
)
)
# Combine the animations

View File

@ -10,11 +10,10 @@ Example:
NeuralNetwork(layer_node_count)
"""
import textwrap
from manim_ml.neural_network.layers.embedding import EmbeddingLayer
import numpy as np
from manim import *
from manim_ml.neural_network.layers.embedding import EmbeddingLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.layers.parent_layers import ConnectiveLayer, ThreeDLayer
from manim_ml.neural_network.layers.util import get_connective_layer
from manim_ml.list_group import ListGroup
@ -23,7 +22,6 @@ from manim_ml.neural_network.neural_network_transformations import (
RemoveLayer,
)
class NeuralNetwork(Group):
"""Neural Network Visualization Container Class"""
@ -59,7 +57,10 @@ class NeuralNetwork(Group):
# Make the connective layers
self.connective_layers, self.all_layers = self._construct_connective_layers()
# Make overhead title
self.title = Text(self.title_text, font_size=DEFAULT_FONT_SIZE / 2)
self.title = Text(
self.title_text,
font_size=DEFAULT_FONT_SIZE / 2
)
self.title.next_to(self, UP, 1.0)
self.add(self.title)
# Place layers at correct z index
@ -96,6 +97,7 @@ class NeuralNetwork(Group):
previous_layer = self.input_layers[layer_index - 1]
current_layer = self.input_layers[layer_index]
current_layer.move_to(previous_layer.get_center())
if layout_direction == "left_to_right":
x_shift = previous_layer.get_width() / 2 \
+ current_layer.get_width() / 2 \
@ -106,7 +108,6 @@ class NeuralNetwork(Group):
previous_layer.get_width() / 2 \
+ current_layer.get_width() / 2
) + self.layer_spacing)
shift_vector = np.array([0, y_shift, 0])
else:
raise Exception(
@ -119,15 +120,13 @@ class NeuralNetwork(Group):
# Place activation function
if hasattr(current_layer, "activation_function"):
if not current_layer.activation_function is None:
up_movement = np.array(
[
0,
current_layer.get_height() / 2
+ current_layer.activation_function.get_height() / 2
+ 0.5 * self.layer_spacing,
0,
]
)
up_movement = np.array([
0,
current_layer.get_height() / 2
+ current_layer.activation_function.get_height() / 2
+ 0.5 * self.layer_spacing,
0,
])
current_layer.activation_function.move_to(
current_layer,
)

View File

@ -2,7 +2,7 @@ from setuptools import setup, find_packages
setup(
name="manim_ml",
version="0.0.14",
version="0.0.15",
description=(" Machine Learning Animations in python using Manim."),
packages=find_packages(),
)

BIN
tests/.DS_Store vendored

Binary file not shown.

Binary file not shown.

View File

@ -30,9 +30,6 @@ class CombinedScene(ThreeDScene):
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False,
all_filters_at_once=False
)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)
self.play(forward_pass, run_time=30)

View File

@ -0,0 +1,74 @@
from manim import *
from manim_ml.neural_network.layers.convolutional_2d import Convolutional2DLayer
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
from manim_ml.neural_network.neural_network import NeuralNetwork
from manim_ml.utils.testing.frames_comparison import frames_comparison
__module_test__ = "padding"
# Make the specific scene
config.pixel_height = 1200
config.pixel_width = 1900
config.frame_height = 6.0
config.frame_width = 6.0
class CombinedScene(ThreeDScene):
def construct(self):
# Make nn
nn = NeuralNetwork([
Convolutional2DLayer(
num_feature_maps=1,
feature_map_size=7,
padding=1,
padding_dashed=True
),
Convolutional2DLayer(
num_feature_maps=3,
feature_map_size=7,
filter_size=3,
padding=0,
padding_dashed=False
),
FeedForwardLayer(3),
],
layer_spacing=0.25,
)
# Center the nn
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass, run_time=30)
@frames_comparison
def test_ConvPadding(scene):
# Make nn
nn = NeuralNetwork([
Convolutional2DLayer(
num_feature_maps=1,
feature_map_size=7,
padding=1,
padding_dashed=True
),
Convolutional2DLayer(
num_feature_maps=3,
feature_map_size=7,
filter_size=3,
padding=1,
filter_spacing=0.35,
padding_dashed=False
),
FeedForwardLayer(3),
],
layer_spacing=0.25,
)
# Center the nn
nn.move_to(ORIGIN)
scene.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation()
scene.play(forward_pass, run_time=30)

View File

@ -77,9 +77,6 @@ class CombinedScene(ThreeDScene):
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False,
all_filters_at_once=False
)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)

View File

@ -14,4 +14,15 @@ def test_FeedForwardScene(scene):
FeedForwardLayer(3)
])
scene.add(nn)
scene.add(nn)
class FeedForwardScene(Scene):
def construct(self):
nn = NeuralNetwork([
FeedForwardLayer(3),
FeedForwardLayer(5),
FeedForwardLayer(3)
])
self.add(nn)

View File

@ -0,0 +1,12 @@
from manim import *
from manim_ml.gridded_rectangle import GriddedRectangle
class TestGriddedRectangleScene(ThreeDScene):
def construct(self):
rect = GriddedRectangle(
color=ORANGE,
width=3,
height=3
)
self.add(rect)

View File

@ -33,11 +33,7 @@ class CombinedScene(ThreeDScene):
self.add(nn)
self.wait(5)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False, all_filters_at_once=False
)
print(forward_pass)
print(forward_pass.animations)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)
@ -57,8 +53,6 @@ class SmallNetwork(ThreeDScene):
nn.move_to(ORIGIN)
self.add(nn)
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False, all_filters_at_once=False
)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)

View File

@ -31,14 +31,7 @@ class CombinedScene(ThreeDScene):
nn.move_to(ORIGIN)
nn.scale(1.3)
self.add(nn)
"""
self.play(
FadeIn(nn)
)
"""
# Play animation
forward_pass = nn.make_forward_pass_animation(
corner_pulses=False, all_filters_at_once=False, highlight_filters=True
)
forward_pass = nn.make_forward_pass_animation()
self.wait(1)
self.play(forward_pass)