Added padding.

Fixed a bug with ImageLayerToConvolutional2D

Padding example
This commit is contained in:
Alec Helbling
2023-01-31 23:04:23 -05:00
parent 60bd02b22f
commit 4b06ce1622
20 changed files with 445 additions and 103 deletions

View File

@ -12,6 +12,89 @@ from manim_ml.neural_network.layers.parent_layers import (
)
from manim_ml.gridded_rectangle import GriddedRectangle
class FeatureMap(VGroup):
"""Class for making a feature map"""
def __init__(
self,
color=ORANGE,
feature_map_size=None,
fill_color=ORANGE,
fill_opacity=0.2,
cell_width=0.2,
padding=(0, 0),
stroke_width=2.0,
show_grid_lines=False,
padding_dashed=False
):
super().__init__()
self.color = color
self.feature_map_size = feature_map_size
self.fill_color = fill_color
self.fill_opacity = fill_opacity
self.cell_width = cell_width
self.padding = padding
self.stroke_width = stroke_width
self.show_grid_lines = show_grid_lines
self.padding_dashed = padding_dashed
# Check if we have non-zero padding
if padding[0] > 0 or padding[1] > 0:
# Make the exterior rectangle dashed
width_with_padding = (self.feature_map_size[0] + self.padding[0] * 2) * self.cell_width
height_with_padding = (self.feature_map_size[1] + self.padding[1] * 2) * self.cell_width
self.untransformed_width = width_with_padding
self.untransformed_height = height_with_padding
self.exterior_rectangle = GriddedRectangle(
color=self.color,
width=width_with_padding,
height=height_with_padding,
fill_color=self.color,
fill_opacity=self.fill_opacity,
stroke_color=self.color,
stroke_width=self.stroke_width,
grid_xstep=self.cell_width,
grid_ystep=self.cell_width,
grid_stroke_width=self.stroke_width / 2,
grid_stroke_color=self.color,
show_grid_lines=self.show_grid_lines,
dotted_lines=self.padding_dashed
)
self.add(self.exterior_rectangle)
# Add an interior rectangle with no fill color
self.interior_rectangle = GriddedRectangle(
color=self.color,
fill_opacity=0.0,
width=self.feature_map_size[0] * self.cell_width,
height=self.feature_map_size[1] * self.cell_width,
stroke_width=self.stroke_width
)
self.add(self.interior_rectangle)
else:
# Just make an exterior rectangle with no dashes.
self.untransformed_height = self.feature_map_size[1] * self.cell_width,
self.untransformed_width = self.feature_map_size[0] * self.cell_width,
# Make the exterior rectangle
self.exterior_rectangle = GriddedRectangle(
color=self.color,
height=self.feature_map_size[1] * self.cell_width,
width=self.feature_map_size[0] * self.cell_width,
fill_color=self.color,
fill_opacity=self.fill_opacity,
stroke_color=self.color,
stroke_width=self.stroke_width,
grid_xstep=self.cell_width,
grid_ystep=self.cell_width,
grid_stroke_width=self.stroke_width / 2,
grid_stroke_color=self.color,
show_grid_lines=self.show_grid_lines,
)
self.add(self.exterior_rectangle)
def get_corners_dict(self):
"""Returns a dictionary of the corners"""
# Sort points through clockwise rotation of a vector in the xy plane
return self.exterior_rectangle.get_corners_dict()
class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
"""Handles rendering a convolutional layer for a nn"""
@ -24,33 +107,48 @@ class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
cell_width=0.2,
filter_spacing=0.1,
color=BLUE,
pulse_color=ORANGE,
show_grid_lines=False,
active_color=ORANGE,
filter_color=ORANGE,
show_grid_lines=False,
fill_opacity=0.3,
stride=1,
stroke_width=2.0,
activation_function=None,
padding=0,
padding_dashed=True,
**kwargs,
):
super().__init__(**kwargs)
self.num_feature_maps = num_feature_maps
self.filter_color = filter_color
if isinstance(padding, tuple):
assert len(padding) == 2
self.padding = padding
elif isinstance(padding, int):
self.padding = (padding, padding)
else:
raise Exception(f"Unrecognized type for padding: {type(padding)}")
if isinstance(feature_map_size, int):
self.feature_map_size = (feature_map_size, feature_map_size)
else:
self.feature_map_size = feature_map_size
if isinstance(filter_size, int):
self.filter_size = (filter_size, filter_size)
else:
self.filter_size = filter_size
self.cell_width = cell_width
self.filter_spacing = filter_spacing
self.color = color
self.pulse_color = pulse_color
self.active_color = active_color
self.stride = stride
self.stroke_width = stroke_width
self.show_grid_lines = show_grid_lines
self.activation_function = activation_function
self.fill_opacity = fill_opacity
self.padding_dashed = padding_dashed
def construct_layer(
self,
@ -92,12 +190,14 @@ class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
# Draw rectangles that are filled in with opacity
feature_maps = []
for filter_index in range(self.num_feature_maps):
rectangle = GriddedRectangle(
# Check if we need to add padding
"""
feature_map = GriddedRectangle(
color=self.color,
height=self.feature_map_size[1] * self.cell_width,
width=self.feature_map_size[0] * self.cell_width,
fill_color=self.color,
fill_opacity=0.2,
fill_opacity=self.fill_opacity,
stroke_color=self.color,
stroke_width=self.stroke_width,
grid_xstep=self.cell_width,
@ -106,52 +206,44 @@ class Convolutional2DLayer(VGroupNeuralNetworkLayer, ThreeDLayer):
grid_stroke_color=self.color,
show_grid_lines=self.show_grid_lines,
)
"""
# feature_map = GriddedRectangle()
feature_map = FeatureMap(
color=self.color,
feature_map_size=self.feature_map_size,
cell_width=self.cell_width,
fill_color=self.color,
fill_opacity=self.fill_opacity,
padding=self.padding,
padding_dashed=self.padding_dashed
)
# Move the feature map
rectangle.move_to([0, 0, filter_index * self.filter_spacing])
feature_map.move_to([0, 0, filter_index * self.filter_spacing])
# rectangle.set_z_index(4)
feature_maps.append(rectangle)
feature_maps.append(feature_map)
return VGroup(*feature_maps)
def highlight_and_unhighlight_feature_maps(self):
"""Highlights then unhighlights feature maps"""
return Succession(
ApplyMethod(self.feature_maps.set_color, self.pulse_color),
ApplyMethod(self.feature_maps.set_color, self.active_color),
ApplyMethod(self.feature_maps.set_color, self.color),
)
def make_forward_pass_animation(
self, run_time=5, corner_pulses=False, layer_args={}, **kwargs
self, run_time=5, layer_args={}, **kwargs
):
"""Convolution forward pass animation"""
# Note: most of this animation is done in the Convolution3DToConvolution3D layer
if corner_pulses:
raise NotImplementedError()
passing_flashes = []
for line in self.corner_lines:
pulse = ShowPassingFlash(
line.copy().set_color(self.pulse_color).set_stroke(opacity=1.0),
time_width=0.5,
run_time=run_time,
rate_func=rate_functions.linear,
)
passing_flashes.append(pulse)
# per_filter_run_time = run_time / len(self.feature_maps)
# Make animation group
if not self.activation_function is None:
animation_group = AnimationGroup(
*passing_flashes,
# filter_flashes
self.activation_function.make_evaluate_animation(),
self.highlight_and_unhighlight_feature_maps(),
lag_ratio=0.0,
)
else:
if not self.activation_function is None:
animation_group = AnimationGroup(
self.activation_function.make_evaluate_animation(),
self.highlight_and_unhighlight_feature_maps(),
lag_ratio=0.0,
)
else:
animation_group = AnimationGroup()
animation_group = AnimationGroup()
return animation_group