mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-05-17 18:55:54 +08:00
Update readme and setup code to be pushed to pip repository.
This commit is contained in:
@ -60,6 +60,12 @@ class VariationalAutoencoderScene(Scene):
|
||||
self.play(neural_network.make_forward_pass_animation(run_time=15))
|
||||
```
|
||||
|
||||
### Convolutional Neural Network
|
||||
|
||||
This is a visualization of a Convolutional Neural Network.
|
||||
|
||||
<img src="examples/media/CNNScene.gif">
|
||||
|
||||
### Generative Adversarial Network
|
||||
|
||||
This is a visualization of a Generative Adversarial Network made using ManimML.
|
||||
|
@ -3,40 +3,26 @@ from pathlib import Path
|
||||
from manim import *
|
||||
from PIL import Image
|
||||
|
||||
<<<<<<< HEAD
|
||||
from manim_ml.neural_network.layers.convolutional3d import Convolutional3DLayer
|
||||
=======
|
||||
from manim_ml.neural_network.layers import Convolutional3DLayer
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
|
||||
from manim_ml.neural_network.layers.image import ImageLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
|
||||
<<<<<<< HEAD
|
||||
# Make the specific scene
|
||||
config.pixel_height = 1200
|
||||
config.pixel_width = 1900
|
||||
config.frame_height = 7.0
|
||||
config.frame_width = 7.0
|
||||
=======
|
||||
ROOT_DIR = Path(__file__).parents[2]
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
|
||||
def make_code_snippet():
|
||||
code_str = """
|
||||
# Make nn
|
||||
nn = NeuralNetwork([
|
||||
<<<<<<< HEAD
|
||||
ImageLayer(numpy_image, height=1.5),
|
||||
Convolutional3DLayer(1, 7, 7, 3, 3),
|
||||
Convolutional3DLayer(3, 5, 5, 3, 3),
|
||||
Convolutional3DLayer(5, 3, 3, 1, 1),
|
||||
=======
|
||||
ImageLayer(numpy_image),
|
||||
Convolutional3DLayer(3, 3, 3),
|
||||
Convolutional3DLayer(5, 2, 2),
|
||||
Convolutional3DLayer(10, 2, 1),
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(3),
|
||||
])
|
||||
@ -64,7 +50,6 @@ class CombinedScene(ThreeDScene):
|
||||
numpy_image = np.asarray(image)
|
||||
# Make nn
|
||||
nn = NeuralNetwork([
|
||||
<<<<<<< HEAD
|
||||
ImageLayer(numpy_image, height=1.5),
|
||||
Convolutional3DLayer(1, 7, 7, 3, 3, filter_spacing=0.32),
|
||||
Convolutional3DLayer(3, 5, 5, 3, 3, filter_spacing=0.32),
|
||||
@ -75,16 +60,6 @@ class CombinedScene(ThreeDScene):
|
||||
layer_spacing=0.25,
|
||||
)
|
||||
# Center the nn
|
||||
=======
|
||||
ImageLayer(numpy_image, height=3.5),
|
||||
Convolutional3DLayer(3, 3, 3, filter_spacing=0.2),
|
||||
Convolutional3DLayer(5, 2, 2, filter_spacing=0.2),
|
||||
Convolutional3DLayer(10, 2, 1, filter_spacing=0.2),
|
||||
FeedForwardLayer(3, rectangle_stroke_width=4, node_stroke_width=4).scale(2),
|
||||
FeedForwardLayer(1, rectangle_stroke_width=4, node_stroke_width=4).scale(2)
|
||||
], layer_spacing=0.2)
|
||||
nn.scale(0.9)
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
nn.move_to(ORIGIN)
|
||||
self.add(nn)
|
||||
# Make code snippet
|
||||
|
85
examples/code_snippet/image_nn_code_snippet.py
Normal file
85
examples/code_snippet/image_nn_code_snippet.py
Normal file
@ -0,0 +1,85 @@
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import FeedForwardLayer, ImageLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
config.pixel_height = 720
|
||||
config.pixel_width = 1280
|
||||
config.frame_height = 6.0
|
||||
config.frame_width = 6.0
|
||||
|
||||
class ImageNeuralNetworkScene(Scene):
|
||||
|
||||
def make_code_snippet(self):
|
||||
code_str = """
|
||||
# Make image object
|
||||
image = Image.open('images/image.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
# Make Neural Network
|
||||
layers = [
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3)
|
||||
]
|
||||
nn = NeuralNetwork(layers)
|
||||
self.add(nn)
|
||||
# Play animation
|
||||
self.play(
|
||||
nn.make_forward_pass_animation()
|
||||
)
|
||||
"""
|
||||
|
||||
code = Code(
|
||||
code = code_str,
|
||||
tab_width=4,
|
||||
background_stroke_width=1,
|
||||
background_stroke_color=WHITE,
|
||||
insert_line_no=False,
|
||||
style='monokai',
|
||||
#background="window",
|
||||
language="py",
|
||||
)
|
||||
code.scale(0.2)
|
||||
|
||||
return code
|
||||
|
||||
def construct(self):
|
||||
image = Image.open('../../tests/images/image.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
# Make nn
|
||||
layers = [
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(6)
|
||||
]
|
||||
nn = NeuralNetwork(layers)
|
||||
nn.scale(0.9)
|
||||
# Center the nn
|
||||
nn.move_to(ORIGIN)
|
||||
nn.rotate(-PI/2)
|
||||
nn.layers[0].image_mobject.rotate(PI/2)
|
||||
nn.layers[0].image_mobject.shift([0, -0.4, 0])
|
||||
nn.shift([1.5, 0.3, 0])
|
||||
self.add(nn)
|
||||
# Make code snippet
|
||||
code_snippet = self.make_code_snippet()
|
||||
code_snippet.scale(1.9)
|
||||
code_snippet.shift([-1.25, 0, 0])
|
||||
self.add(code_snippet)
|
||||
# Play animation
|
||||
self.play(
|
||||
nn.make_forward_pass_animation(run_time=10)
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""Render all scenes"""
|
||||
# Feed Forward Neural Network
|
||||
ffnn_scene = FeedForwardNeuralNetworkScene()
|
||||
ffnn_scene.render()
|
||||
# Neural Network
|
||||
nn_scene = NeuralNetworkScene()
|
||||
nn_scene.render()
|
85
examples/code_snippet/vae_code_landscape.py
Normal file
85
examples/code_snippet/vae_code_landscape.py
Normal file
@ -0,0 +1,85 @@
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import FeedForwardLayer, ImageLayer, EmbeddingLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
config.pixel_height = 720
|
||||
config.pixel_width = 720
|
||||
config.frame_height = 6.0
|
||||
config.frame_width = 6.0
|
||||
|
||||
class VAECodeSnippetScene(Scene):
|
||||
|
||||
def make_code_snippet(self):
|
||||
code_str = """
|
||||
# Make Neural Network
|
||||
nn = NeuralNetwork([
|
||||
ImageLayer(numpy_image, height=1.2),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
EmbeddingLayer(),
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
ImageLayer(numpy_image, height=1.2),
|
||||
], layer_spacing=0.1)
|
||||
# Play animation
|
||||
self.play(nn.make_forward_pass_animation())
|
||||
"""
|
||||
|
||||
code = Code(
|
||||
code = code_str,
|
||||
tab_width=4,
|
||||
background_stroke_width=1,
|
||||
# background_stroke_color=WHITE,
|
||||
insert_line_no=False,
|
||||
background="window",
|
||||
# font="Monospace",
|
||||
style='one-dark',
|
||||
language="py",
|
||||
)
|
||||
|
||||
return code
|
||||
|
||||
def construct(self):
|
||||
image = Image.open('../../tests/images/image.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
embedding_layer = EmbeddingLayer(dist_theme="ellipse", point_radius=0.04).scale(1.0)
|
||||
# Make nn
|
||||
nn = NeuralNetwork([
|
||||
ImageLayer(numpy_image, height=1.2),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
embedding_layer,
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
ImageLayer(numpy_image, height=1.2),
|
||||
], layer_spacing=0.1)
|
||||
|
||||
nn.scale(1.1)
|
||||
# Center the nn
|
||||
nn.move_to(ORIGIN)
|
||||
# nn.rotate(-PI/2)
|
||||
# nn.all_layers[0].image_mobject.rotate(PI/2)
|
||||
# nn.all_layers[0].image_mobject.shift([0, -0.4, 0])
|
||||
# nn.all_layers[-1].image_mobject.rotate(PI/2)
|
||||
# nn.all_layers[-1].image_mobject.shift([0, -0.4, 0])
|
||||
nn.shift([0, -1.4, 0])
|
||||
self.add(nn)
|
||||
# Make code snippet
|
||||
code_snippet = self.make_code_snippet()
|
||||
code_snippet.scale(0.52)
|
||||
code_snippet.shift([0, 1.25, 0])
|
||||
# code_snippet.shift([-1.25, 0, 0])
|
||||
self.add(code_snippet)
|
||||
# Play animation
|
||||
self.play(
|
||||
nn.make_forward_pass_animation(),
|
||||
run_time=10
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""Render all scenes"""
|
||||
# Neural Network
|
||||
nn_scene = VAECodeSnippetScene()
|
||||
nn_scene.render()
|
92
examples/code_snippet/vae_nn_code_snippet.py
Normal file
92
examples/code_snippet/vae_nn_code_snippet.py
Normal file
@ -0,0 +1,92 @@
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import FeedForwardLayer, ImageLayer, EmbeddingLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
config.pixel_height = 720
|
||||
config.pixel_width = 1280
|
||||
config.frame_height = 6.0
|
||||
config.frame_width = 6.0
|
||||
|
||||
class VAECodeSnippetScene(Scene):
|
||||
|
||||
def make_code_snippet(self):
|
||||
code_str = """
|
||||
# Make image object
|
||||
image = Image.open('images/image.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
# Make Neural Network
|
||||
nn = NeuralNetwork([
|
||||
ImageLayer(numpy_image, height=1.2),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
EmbeddingLayer(),
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
ImageLayer(numpy_image, height=1.2),
|
||||
], layer_spacing=0.1)
|
||||
self.add(nn)
|
||||
# Play animation
|
||||
self.play(
|
||||
nn.make_forward_pass_animation()
|
||||
)
|
||||
"""
|
||||
|
||||
code = Code(
|
||||
code = code_str,
|
||||
tab_width=4,
|
||||
background_stroke_width=1,
|
||||
# background_stroke_color=WHITE,
|
||||
insert_line_no=False,
|
||||
background="window",
|
||||
# font="Monospace",
|
||||
style='one-dark',
|
||||
language="py",
|
||||
)
|
||||
code.scale(0.2)
|
||||
|
||||
return code
|
||||
|
||||
def construct(self):
|
||||
image = Image.open('../../tests/images/image.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
embedding_layer = EmbeddingLayer(dist_theme="ellipse", point_radius=0.04).scale(1.0)
|
||||
# Make nn
|
||||
nn = NeuralNetwork([
|
||||
ImageLayer(numpy_image, height=1.0),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
embedding_layer,
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
ImageLayer(numpy_image, height=1.0),
|
||||
], layer_spacing=0.1)
|
||||
|
||||
nn.scale(0.65)
|
||||
# Center the nn
|
||||
nn.move_to(ORIGIN)
|
||||
nn.rotate(-PI/2)
|
||||
nn.all_layers[0].image_mobject.rotate(PI/2)
|
||||
# nn.all_layers[0].image_mobject.shift([0, -0.4, 0])
|
||||
nn.all_layers[-1].image_mobject.rotate(PI/2)
|
||||
# nn.all_layers[-1].image_mobject.shift([0, -0.4, 0])
|
||||
nn.shift([1.5, 0.0, 0])
|
||||
self.add(nn)
|
||||
# Make code snippet
|
||||
code_snippet = self.make_code_snippet()
|
||||
code_snippet.scale(1.9)
|
||||
code_snippet.shift([-1.25, 0, 0])
|
||||
self.add(code_snippet)
|
||||
# Play animation
|
||||
self.play(
|
||||
nn.make_forward_pass_animation(),
|
||||
run_time=10
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""Render all scenes"""
|
||||
# Neural Network
|
||||
nn_scene = VAECodeSnippetScene()
|
||||
nn_scene.render()
|
41
examples/logo/logo.py
Normal file
41
examples/logo/logo.py
Normal file
@ -0,0 +1,41 @@
|
||||
"""
|
||||
Logo for Manim Machine Learning
|
||||
"""
|
||||
from manim import *
|
||||
from manim_ml.neural_network.neural_network import FeedForwardNeuralNetwork
|
||||
|
||||
config.pixel_height = 500
|
||||
config.pixel_width = 500
|
||||
config.frame_height = 4.0
|
||||
config.frame_width = 4.0
|
||||
|
||||
class ManimMLLogo(Scene):
|
||||
|
||||
def construct(self):
|
||||
self.text = Text("ManimML")
|
||||
self.text.scale(1.0)
|
||||
self.neural_network = FeedForwardNeuralNetwork([3, 5, 3, 6, 3], layer_spacing=0.3, node_color=BLUE)
|
||||
self.neural_network.scale(1.0)
|
||||
self.neural_network.move_to(self.text.get_bottom())
|
||||
self.neural_network.shift(1.25 * DOWN)
|
||||
self.logo_group = Group(self.text, self.neural_network)
|
||||
self.logo_group.scale(1.0)
|
||||
self.logo_group.move_to(ORIGIN)
|
||||
self.play(Write(self.text))
|
||||
self.play(Create(self.neural_network))
|
||||
# self.surrounding_rectangle = SurroundingRectangle(self.logo_group, buff=0.3, color=BLUE)
|
||||
underline = Underline(self.text, color=BLUE)
|
||||
animation_group = AnimationGroup(
|
||||
self.neural_network.make_forward_pass_animation(run_time=5),
|
||||
Create(underline),
|
||||
# Create(self.surrounding_rectangle)
|
||||
)
|
||||
# self.surrounding_rectangle = SurroundingRectangle(self.logo_group, buff=0.3, color=BLUE)
|
||||
underline = Underline(self.text, color=BLUE)
|
||||
animation_group = AnimationGroup(
|
||||
self.neural_network.make_forward_pass_animation(run_time=5),
|
||||
Create(underline),
|
||||
# Create(self.surrounding_rectangle)
|
||||
)
|
||||
self.play(animation_group)
|
||||
self.wait(5)
|
25
examples/logo/website_logo.py
Normal file
25
examples/logo/website_logo.py
Normal file
@ -0,0 +1,25 @@
|
||||
"""
|
||||
Logo for Manim Machine Learning
|
||||
"""
|
||||
from manim import *
|
||||
from manim_ml.neural_network.neural_network import FeedForwardNeuralNetwork
|
||||
|
||||
config.pixel_height = 400
|
||||
config.pixel_width = 600
|
||||
config.frame_height = 8.0
|
||||
config.frame_width = 10.0
|
||||
|
||||
class ManimMLLogo(Scene):
|
||||
|
||||
def construct(self):
|
||||
self.neural_network = FeedForwardNeuralNetwork([3, 5, 3, 5], layer_spacing=0.6, node_color=BLUE,
|
||||
edge_width=6)
|
||||
self.neural_network.scale(3)
|
||||
self.neural_network.move_to(ORIGIN)
|
||||
self.play(Create(self.neural_network))
|
||||
# self.surrounding_rectangle = SurroundingRectangle(self.logo_group, buff=0.3, color=BLUE)
|
||||
animation_group = AnimationGroup(
|
||||
self.neural_network.make_forward_pass_animation(run_time=5),
|
||||
)
|
||||
self.play(animation_group)
|
||||
self.wait(5)
|
BIN
examples/media/CNNScene.gif
Normal file
BIN
examples/media/CNNScene.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 18 MiB |
BIN
examples/media/CNNScene.mp4
Normal file
BIN
examples/media/CNNScene.mp4
Normal file
Binary file not shown.
@ -16,134 +16,13 @@ from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
|
||||
ROOT_DIR = Path(__file__).parents[2]
|
||||
|
||||
config.pixel_height = 1200
|
||||
config.pixel_width = 1900
|
||||
config.frame_height = 7.0
|
||||
config.frame_width = 7.0
|
||||
|
||||
<<<<<<< HEAD
|
||||
return animation_group
|
||||
|
||||
def make_dot_divergence_animation(self, location, run_time=3.0):
|
||||
"""Makes dots diverge from the given location and move the decoder"""
|
||||
animations = []
|
||||
for node in self.decoder.layers[0].node_group:
|
||||
new_dot = Dot(location, radius=self.dot_radius, color=RED)
|
||||
per_node_succession = Succession(
|
||||
Create(new_dot),
|
||||
new_dot.animate.move_to(node.get_center()),
|
||||
)
|
||||
animations.append(per_node_succession)
|
||||
|
||||
animation_group = AnimationGroup(*animations)
|
||||
return animation_group
|
||||
|
||||
def make_reset_vae_animation(self):
|
||||
"""Resets the VAE to just the neural network"""
|
||||
animation_group = AnimationGroup(
|
||||
FadeOut(self.input_image),
|
||||
FadeOut(self.output_image),
|
||||
FadeOut(self.distribution_objects),
|
||||
run_time=1.0
|
||||
)
|
||||
|
||||
return animation_group
|
||||
|
||||
def make_forward_pass_animation(self, image_pair, run_time=1.5, **kwargs):
|
||||
"""Overriden forward pass animation specific to a VAE"""
|
||||
per_unit_runtime = run_time
|
||||
# Setup images
|
||||
self.input_image, self.output_image = self._construct_input_output_images(image_pair)
|
||||
self.input_image.move_to(self.encoder.get_left())
|
||||
self.input_image.shift(LEFT)
|
||||
self.output_image.move_to(self.decoder.get_right())
|
||||
self.output_image.shift(RIGHT*1.3)
|
||||
# Make encoder forward pass
|
||||
encoder_forward_pass = self.encoder.make_forward_propagation_animation(run_time=per_unit_runtime)
|
||||
# Make red dot in embedding
|
||||
mean = [1.0, 1.5]
|
||||
mean_point = self.embedding.axes.coords_to_point(*mean)
|
||||
std = [0.8, 1.2]
|
||||
# Make the dot convergence animation
|
||||
dot_convergence_animation = self.make_dot_convergence_animation(mean, run_time=per_unit_runtime)
|
||||
encoding_succesion = Succession(
|
||||
encoder_forward_pass,
|
||||
dot_convergence_animation
|
||||
)
|
||||
# Make an ellipse centered at mean_point witAnimationGraph std outline
|
||||
center_dot = Dot(mean_point, radius=self.dot_radius, color=RED)
|
||||
ellipse = Ellipse(width=std[0], height=std[1], color=RED, fill_opacity=0.3, stroke_width=self.ellipse_stroke_width)
|
||||
ellipse.move_to(mean_point)
|
||||
self.distribution_objects = VGroup(
|
||||
center_dot,
|
||||
ellipse
|
||||
)
|
||||
# Make ellipse animation
|
||||
ellipse_animation = AnimationGroup(
|
||||
GrowFromCenter(center_dot),
|
||||
GrowFromCenter(ellipse),
|
||||
)
|
||||
# Make the dot divergence animation
|
||||
sampled_point = [0.51, 1.0]
|
||||
divergence_point = self.embedding.axes.coords_to_point(*sampled_point)
|
||||
dot_divergence_animation = self.make_dot_divergence_animation(divergence_point, run_time=per_unit_runtime)
|
||||
# Make decoder foward pass
|
||||
decoder_forward_pass = self.decoder.make_forward_propagation_animation(run_time=per_unit_runtime)
|
||||
# Add the animations to the group
|
||||
animation_group = AnimationGroup(
|
||||
FadeIn(self.input_image),
|
||||
encoding_succesion,
|
||||
ellipse_animation,
|
||||
dot_divergence_animation,
|
||||
decoder_forward_pass,
|
||||
FadeIn(self.output_image),
|
||||
lag_ratio=1,
|
||||
)
|
||||
|
||||
return animation_group
|
||||
|
||||
def make_interpolation_animation(self, interpolation_images, frame_rate=5):
|
||||
"""Makes an animation interpolation"""
|
||||
num_images = len(interpolation_images)
|
||||
# Make madeup path
|
||||
interpolation_latent_path = np.linspace([-0.7, -1.2], [1.2, 1.5], num=num_images)
|
||||
# Make the path animation
|
||||
first_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[0])
|
||||
last_dot_location = self.embedding.axes.coords_to_point(*interpolation_latent_path[-1])
|
||||
moving_dot = Dot(first_dot_location, radius=self.dot_radius, color=RED)
|
||||
self.add(moving_dot)
|
||||
animation_list = [Create(Line(first_dot_location, last_dot_location, color=RED), run_time=0.1*num_images)]
|
||||
for image_index in range(num_images - 1):
|
||||
next_index = image_index + 1
|
||||
# Get path
|
||||
next_point = interpolation_latent_path[next_index]
|
||||
next_position = self.embedding.axes.coords_to_point(*next_point)
|
||||
# Draw path from current point to next point
|
||||
move_animation = moving_dot.animate(run_time=0.1*num_images).move_to(next_position)
|
||||
animation_list.append(move_animation)
|
||||
|
||||
interpolation_animation = AnimationGroup(*animation_list)
|
||||
# Make the images animation
|
||||
animation_list = [Wait(0.5)]
|
||||
for numpy_image in interpolation_images:
|
||||
numpy_image = numpy_image[None, :, :]
|
||||
manim_image = self._construct_image_mobject(numpy_image)
|
||||
# Move the image to the correct location
|
||||
manim_image.move_to(self.output_image)
|
||||
# Add the image
|
||||
animation_list.append(FadeIn(manim_image, run_time=0.1))
|
||||
# Wait
|
||||
# animation_list.append(Wait(1 / frame_rate))
|
||||
# Remove the image
|
||||
# animation_list.append(FadeOut(manim_image, run_time=0.1))
|
||||
images_animation = AnimationGroup(*animation_list, lag_ratio=1.0)
|
||||
# Combine the two into an AnimationGroup
|
||||
animation_group = AnimationGroup(
|
||||
interpolation_animation,
|
||||
images_animation
|
||||
)
|
||||
|
||||
return animation_group
|
||||
=======
|
||||
class VAEScene(Scene):
|
||||
"""Scene object for a Variational Autoencoder and Autoencoder"""
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
|
||||
def construct(self):
|
||||
|
||||
@ -152,13 +31,12 @@ class VAEScene(Scene):
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
EmbeddingLayer(dist_theme="ellipse").scale(2),
|
||||
EmbeddingLayer(dist_theme="ellipse"),
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
])
|
||||
|
||||
vae.scale(1.3)
|
||||
|
||||
self.play(Create(vae))
|
||||
self.play(vae.make_forward_pass_animation(run_time=15))
|
||||
self.play(vae.make_forward_pass_animation(run_time=15))
|
Reference in New Issue
Block a user