mirror of
https://github.com/helblazer811/ManimML.git
synced 2025-05-18 03:05:23 +08:00
Merge branch 'main' of github.com:helblazer811/ManimML
This commit is contained in:
@ -1,25 +1,42 @@
|
||||
from pathlib import Path
|
||||
|
||||
from manim import *
|
||||
from PIL import Image
|
||||
|
||||
<<<<<<< HEAD
|
||||
from manim_ml.neural_network.layers.convolutional3d import Convolutional3DLayer
|
||||
=======
|
||||
from manim_ml.neural_network.layers import Convolutional3DLayer
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
from manim_ml.neural_network.layers.feed_forward import FeedForwardLayer
|
||||
from manim_ml.neural_network.layers.image import ImageLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
|
||||
<<<<<<< HEAD
|
||||
# Make the specific scene
|
||||
config.pixel_height = 1200
|
||||
config.pixel_width = 1900
|
||||
config.frame_height = 7.0
|
||||
config.frame_width = 7.0
|
||||
=======
|
||||
ROOT_DIR = Path(__file__).parents[2]
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
|
||||
def make_code_snippet():
|
||||
code_str = """
|
||||
# Make nn
|
||||
nn = NeuralNetwork([
|
||||
<<<<<<< HEAD
|
||||
ImageLayer(numpy_image, height=1.5),
|
||||
Convolutional3DLayer(1, 7, 7, 3, 3),
|
||||
Convolutional3DLayer(3, 5, 5, 3, 3),
|
||||
Convolutional3DLayer(5, 3, 3, 1, 1),
|
||||
=======
|
||||
ImageLayer(numpy_image),
|
||||
Convolutional3DLayer(3, 3, 3),
|
||||
Convolutional3DLayer(5, 2, 2),
|
||||
Convolutional3DLayer(10, 2, 1),
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(3),
|
||||
])
|
||||
@ -43,10 +60,11 @@ def make_code_snippet():
|
||||
|
||||
class CombinedScene(ThreeDScene):
|
||||
def construct(self):
|
||||
image = Image.open('../../assets/mnist/digit.jpeg')
|
||||
image = Image.open(ROOT_DIR / 'assets/mnist/digit.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
# Make nn
|
||||
nn = NeuralNetwork([
|
||||
<<<<<<< HEAD
|
||||
ImageLayer(numpy_image, height=1.5),
|
||||
Convolutional3DLayer(1, 7, 7, 3, 3, filter_spacing=0.32),
|
||||
Convolutional3DLayer(3, 5, 5, 3, 3, filter_spacing=0.32),
|
||||
@ -57,6 +75,16 @@ class CombinedScene(ThreeDScene):
|
||||
layer_spacing=0.25,
|
||||
)
|
||||
# Center the nn
|
||||
=======
|
||||
ImageLayer(numpy_image, height=3.5),
|
||||
Convolutional3DLayer(3, 3, 3, filter_spacing=0.2),
|
||||
Convolutional3DLayer(5, 2, 2, filter_spacing=0.2),
|
||||
Convolutional3DLayer(10, 2, 1, filter_spacing=0.2),
|
||||
FeedForwardLayer(3, rectangle_stroke_width=4, node_stroke_width=4).scale(2),
|
||||
FeedForwardLayer(1, rectangle_stroke_width=4, node_stroke_width=4).scale(2)
|
||||
], layer_spacing=0.2)
|
||||
nn.scale(0.9)
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
nn.move_to(ORIGIN)
|
||||
self.add(nn)
|
||||
# Make code snippet
|
||||
|
@ -1,38 +1,42 @@
|
||||
"""This module is dedicated to visualizing VAE disentanglement"""
|
||||
import sys
|
||||
import os
|
||||
sys.path.append(os.environ["PROJECT_ROOT"])
|
||||
from pathlib import Path
|
||||
|
||||
from manim import *
|
||||
from manim_ml.neural_network import NeuralNetwork
|
||||
import manim_ml.util as util
|
||||
|
||||
from manim_ml.neural_network.layers import FeedForwardLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
import pickle
|
||||
|
||||
class VAEDecoder(VGroup):
|
||||
"""Just shows the VAE encoder"""
|
||||
ROOT_DIR = Path(__file__).parents[2]
|
||||
|
||||
def __init__(self):
|
||||
super(VGroup, self).__init__()
|
||||
# Setup the Neural Network
|
||||
node_counts = [3, 5]
|
||||
self.neural_network = NeuralNetwork(node_counts, layer_spacing=0.55)
|
||||
self.add(self.neural_network)
|
||||
|
||||
def make_encoding_animation(self):
|
||||
pass
|
||||
def construct_image_mobject(input_image, height=2.3):
|
||||
"""Constructs an ImageMobject from a numpy grayscale image"""
|
||||
# Convert image to rgb
|
||||
if len(input_image.shape) == 2:
|
||||
input_image = np.repeat(input_image, 3, axis=0)
|
||||
input_image = np.rollaxis(input_image, 0, start=3)
|
||||
# Make the ImageMobject
|
||||
image_mobject = ImageMobject(input_image, image_mode="RGB")
|
||||
image_mobject.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
|
||||
image_mobject.height = height
|
||||
|
||||
return image_mobject
|
||||
|
||||
class DisentanglementVisualization(VGroup):
|
||||
|
||||
def __init__(self, model_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/saved_models/model_dim2.pth"), image_height=0.35):
|
||||
def __init__(self, model_path=ROOT_DIR / "examples/variational_autoencoder/autoencoder_models/saved_models/model_dim2.pth", image_height=0.35):
|
||||
self.model_path = model_path
|
||||
self.image_height = image_height
|
||||
# Load disentanglement image objects
|
||||
with open(os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/disentanglement.pkl"), "rb") as f:
|
||||
with open(ROOT_DIR/ "examples/variational_autoencoder/autoencoder_models/disentanglement.pkl", "rb") as f:
|
||||
self.image_handler = pickle.load(f)
|
||||
|
||||
|
||||
def make_disentanglement_generation_animation(self):
|
||||
animation_list = []
|
||||
for image_index, image in enumerate(self.image_handler["images"]):
|
||||
image_mobject = util.construct_image_mobject(image, height=self.image_height)
|
||||
image_mobject = construct_image_mobject(image, height=self.image_height)
|
||||
r, c = self.image_handler["bin_indices"][image_index]
|
||||
# Move the image to the correct location
|
||||
r_offset = -1.2
|
||||
@ -80,7 +84,11 @@ class DisentanglementScene(Scene):
|
||||
|
||||
def construct(self):
|
||||
# Make the VAE decoder
|
||||
vae_decoder = VAEDecoder()
|
||||
vae_decoder = NeuralNetwork([
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
], layer_spacing=0.55)
|
||||
|
||||
vae_decoder.shift([-0.55, 0, 0])
|
||||
self.play(Create(vae_decoder), run_time=1)
|
||||
# Make the embedding
|
||||
|
@ -1,4 +1,6 @@
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers.embedding import EmbeddingLayer
|
||||
@ -8,6 +10,8 @@ from manim_ml.neural_network.layers.vector import VectorLayer
|
||||
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
|
||||
ROOT_DIR = Path(__file__).parents[2]
|
||||
|
||||
config.pixel_height = 1080
|
||||
config.pixel_width = 1080
|
||||
config.frame_height = 8.3
|
||||
@ -25,7 +29,7 @@ class GAN(Mobject):
|
||||
def make_entities(self, image_height=1.2):
|
||||
"""Makes all of the network entities"""
|
||||
# Make the fake image layer
|
||||
default_image = Image.open('../../assets/gan/fake_image.png')
|
||||
default_image = Image.open(ROOT_DIR / 'assets/gan/fake_image.png')
|
||||
numpy_image = np.asarray(default_image)
|
||||
self.fake_image_layer = ImageLayer(numpy_image, height=image_height, show_image_on_create=False)
|
||||
# Make the Generator Network
|
||||
@ -45,7 +49,7 @@ class GAN(Mobject):
|
||||
], layer_spacing=0.1)
|
||||
self.add(self.discriminator)
|
||||
# Make Ground Truth Dataset
|
||||
default_image = Image.open('../../assets/gan/real_image.jpg')
|
||||
default_image = Image.open(ROOT_DIR / 'assets/gan/real_image.jpg')
|
||||
numpy_image = np.asarray(default_image)
|
||||
self.ground_truth_layer = ImageLayer(numpy_image, height=image_height)
|
||||
self.add(self.ground_truth_layer)
|
||||
|
@ -1,6 +1,8 @@
|
||||
"""
|
||||
Here is a animated explanatory figure for the "Oracle Guided Image Synthesis with Relative Queries" paper.
|
||||
"""
|
||||
from pathlib import Path
|
||||
|
||||
from manim import *
|
||||
from manim_ml.neural_network.layers import triplet
|
||||
from manim_ml.neural_network.layers.image import ImageLayer
|
||||
@ -19,6 +21,8 @@ config.pixel_width = 1900
|
||||
config.frame_height = 6.0
|
||||
config.frame_width = 6.0
|
||||
|
||||
ROOT_DIR = Path(__file__).parents[3]
|
||||
|
||||
class Localizer():
|
||||
"""
|
||||
Holds the localizer object, which contains the queries, images, etc.
|
||||
@ -30,8 +34,8 @@ class Localizer():
|
||||
self.index = -1
|
||||
self.axes = axes
|
||||
self.num_queries = 3
|
||||
self.assets_path = "../../../assets/oracle_guidance"
|
||||
self.ground_truth_image_path = os.path.join(self.assets_path, "ground_truth.jpg")
|
||||
self.assets_path = ROOT_DIR / "assets/oracle_guidance"
|
||||
self.ground_truth_image_path = self.assets_path / "ground_truth.jpg"
|
||||
self.ground_truth_location = np.array([2, 3])
|
||||
# Prior distribution
|
||||
print("initial gaussian")
|
||||
@ -119,7 +123,7 @@ class OracleGuidanceVisualization(Scene):
|
||||
self.title = None
|
||||
# Set image paths
|
||||
# VAE embedding animation image paths
|
||||
self.assets_path = "../../../assets/oracle_guidance"
|
||||
self.assets_path = ROOT_DIR / "assets/oracle_guidance"
|
||||
self.input_embed_image_path = os.path.join(self.assets_path, "input_image.jpg")
|
||||
self.output_embed_image_path = os.path.join(self.assets_path, "output_image.jpg")
|
||||
|
||||
|
@ -4,123 +4,20 @@ In this module I define Manim visualizations for Variational Autoencoders
|
||||
and Traditional Autoencoders.
|
||||
|
||||
"""
|
||||
from pathlib import Path
|
||||
|
||||
from manim import *
|
||||
import pickle
|
||||
import numpy as np
|
||||
import os
|
||||
from PIL import Image
|
||||
import manim_ml.neural_network as neural_network
|
||||
from manim_ml.neural_network.embedding import EmbeddingLayer
|
||||
from manim_ml.neural_network.feed_forward import FeedForwardLayer
|
||||
from manim_ml.neural_network.image import ImageLayer
|
||||
from manim_ml.neural_network.layers import EmbeddingLayer
|
||||
from manim_ml.neural_network.layers import FeedForwardLayer
|
||||
from manim_ml.neural_network.layers import ImageLayer
|
||||
from manim_ml.neural_network.neural_network import NeuralNetwork
|
||||
|
||||
class VariationalAutoencoder(VGroup):
|
||||
"""Variational Autoencoder Manim Visualization"""
|
||||
ROOT_DIR = Path(__file__).parents[2]
|
||||
|
||||
def __init__(
|
||||
self, encoder_nodes_per_layer=[5, 3], decoder_nodes_per_layer=[3, 5], point_color=BLUE,
|
||||
dot_radius=0.05, ellipse_stroke_width=2.0, layer_spacing=0.5
|
||||
):
|
||||
super(VGroup, self).__init__()
|
||||
self.encoder_nodes_per_layer = encoder_nodes_per_layer
|
||||
self.decoder_nodes_per_layer = decoder_nodes_per_layer
|
||||
self.point_color = point_color
|
||||
self.dot_radius = dot_radius
|
||||
self.layer_spacing = layer_spacing
|
||||
self.ellipse_stroke_width = ellipse_stroke_width
|
||||
# Make the VMobjects
|
||||
self.encoder, self.decoder = self._construct_encoder_and_decoder()
|
||||
self.embedding = self._construct_embedding()
|
||||
# Setup the relative locations
|
||||
self.embedding.move_to(self.encoder)
|
||||
self.embedding.shift([1.4 * self.encoder.width, 0, 0])
|
||||
self.decoder.move_to(self.embedding)
|
||||
self.decoder.shift([self.decoder.width * 1.4, 0, 0])
|
||||
# Add the objects to the VAE object
|
||||
self.add(self.encoder)
|
||||
self.add(self.decoder)
|
||||
self.add(self.embedding)
|
||||
|
||||
def _construct_encoder_and_decoder(self):
|
||||
"""Makes the VAE encoder and decoder"""
|
||||
# Make the encoder
|
||||
layer_node_count = self.encoder_nodes_per_layer
|
||||
encoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
|
||||
encoder.scale(1.2)
|
||||
# Make the decoder
|
||||
layer_node_count = self.decoder_nodes_per_layer
|
||||
decoder = neural_network.NeuralNetwork(layer_node_count, dot_radius=self.dot_radius, layer_spacing=self.layer_spacing)
|
||||
decoder.scale(1.2)
|
||||
|
||||
return encoder, decoder
|
||||
|
||||
def _construct_embedding(self):
|
||||
"""Makes a Gaussian-like embedding"""
|
||||
embedding = VGroup()
|
||||
# Sample points from a Gaussian
|
||||
num_points = 200
|
||||
standard_deviation = [0.9, 0.9]
|
||||
mean = [0, 0]
|
||||
points = np.random.normal(mean, standard_deviation, size=(num_points, 2))
|
||||
# Make an axes
|
||||
embedding.axes = Axes(
|
||||
x_range=[-3, 3],
|
||||
y_range=[-3, 3],
|
||||
x_length=2.2,
|
||||
y_length=2.2,
|
||||
tips=False,
|
||||
)
|
||||
# Add each point to the axes
|
||||
self.point_dots = VGroup()
|
||||
for point in points:
|
||||
point_location = embedding.axes.coords_to_point(*point)
|
||||
dot = Dot(point_location, color=self.point_color, radius=self.dot_radius/2)
|
||||
self.point_dots.add(dot)
|
||||
|
||||
embedding.add(self.point_dots)
|
||||
return embedding
|
||||
|
||||
def _construct_image_mobject(self, input_image, height=2.3):
|
||||
"""Constructs an ImageMobject from a numpy grayscale image"""
|
||||
# Convert image to rgb
|
||||
input_image = np.repeat(input_image, 3, axis=0)
|
||||
input_image = np.rollaxis(input_image, 0, start=3)
|
||||
# Make the ImageMobject
|
||||
image_mobject = ImageMobject(input_image, image_mode="RGB")
|
||||
image_mobject.set_resampling_algorithm(RESAMPLING_ALGORITHMS["nearest"])
|
||||
image_mobject.height = height
|
||||
|
||||
return image_mobject
|
||||
|
||||
def _construct_input_output_images(self, image_pair):
|
||||
"""Places the input and output images for the AE"""
|
||||
# Takes the image pair
|
||||
# image_pair is assumed to be [2, x, y]
|
||||
input_image = image_pair[0][None, :, :]
|
||||
recon_image = image_pair[1][None, :, :]
|
||||
# Make the image mobjects
|
||||
input_image_object = self._construct_image_mobject(input_image)
|
||||
recon_image_object = self._construct_image_mobject(recon_image)
|
||||
|
||||
return input_image_object, recon_image_object
|
||||
|
||||
def make_dot_convergence_animation(self, location, run_time=1.5):
|
||||
"""Makes dots converge on a specific location"""
|
||||
# Move to location
|
||||
animations = []
|
||||
for dot in self.encoder.dots:
|
||||
coords = self.embedding.axes.coords_to_point(*location)
|
||||
animations.append(dot.animate.move_to(coords))
|
||||
move_animations = AnimationGroup(*animations, run_time=1.5)
|
||||
# Follow up with remove animations
|
||||
remove_animations = []
|
||||
for dot in self.encoder.dots:
|
||||
remove_animations.append(FadeOut(dot))
|
||||
remove_animations = AnimationGroup(*remove_animations, run_time=0.2)
|
||||
|
||||
animation_group = Succession(move_animations, remove_animations, lag_ratio=1.0)
|
||||
|
||||
<<<<<<< HEAD
|
||||
return animation_group
|
||||
|
||||
def make_dot_divergence_animation(self, location, run_time=3.0):
|
||||
@ -243,84 +140,25 @@ class VariationalAutoencoder(VGroup):
|
||||
)
|
||||
|
||||
return animation_group
|
||||
=======
|
||||
class VAEScene(Scene):
|
||||
"""Scene object for a Variational Autoencoder and Autoencoder"""
|
||||
>>>>>>> 0bc3ad561ba224f3d33e9f843665c1d50d64a68b
|
||||
|
||||
class VariationalAutoencoder(VGroup):
|
||||
def construct(self):
|
||||
|
||||
def __init__(self):
|
||||
embedding_layer = EmbeddingLayer()
|
||||
|
||||
image = Image.open('images/image.jpeg')
|
||||
numpy_image = np.asarray(image)
|
||||
# Make nn
|
||||
neural_network = NeuralNetwork([
|
||||
numpy_image = np.asarray(Image.open(ROOT_DIR / 'assets/mnist/digit.jpeg'))
|
||||
vae = NeuralNetwork([
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
FeedForwardLayer(5),
|
||||
FeedForwardLayer(3),
|
||||
embedding_layer,
|
||||
EmbeddingLayer(dist_theme="ellipse").scale(2),
|
||||
FeedForwardLayer(3),
|
||||
FeedForwardLayer(5),
|
||||
ImageLayer(numpy_image, height=1.4),
|
||||
])
|
||||
|
||||
neural_network.scale(1.3)
|
||||
|
||||
self.play(Create(neural_network))
|
||||
self.play(neural_network.make_forward_pass_animation(run_time=15))
|
||||
|
||||
class MNISTImageHandler():
|
||||
"""Deals with loading serialized VAE mnist images from "autoencoder_models" """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_pairs_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/image_pairs.pkl"),
|
||||
interpolations_file_path=os.path.join(os.environ["PROJECT_ROOT"], "examples/variational_autoencoder/autoencoder_models/interpolations.pkl")
|
||||
):
|
||||
self.image_pairs_file_path = image_pairs_file_path
|
||||
self.interpolations_file_path = interpolations_file_path
|
||||
|
||||
self.image_pairs = []
|
||||
self.interpolation_images = []
|
||||
self.interpolation_latent_path = []
|
||||
|
||||
self.load_serialized_data()
|
||||
|
||||
def load_serialized_data(self):
|
||||
with open(self.image_pairs_file_path, "rb") as f:
|
||||
self.image_pairs = pickle.load(f)
|
||||
|
||||
with open(self.interpolations_file_path, "rb") as f:
|
||||
self.interpolation_dict = pickle.load(f)
|
||||
self.interpolation_images = self.interpolation_dict["interpolation_images"]
|
||||
self.interpolation_latent_path = self.interpolation_dict["interpolation_path"]
|
||||
|
||||
"""
|
||||
The VAE Scene for the twitter video.
|
||||
"""
|
||||
config.pixel_height = 720
|
||||
config.pixel_width = 1280
|
||||
config.frame_height = 5.0
|
||||
config.frame_width = 5.0
|
||||
# Set random seed so point distribution is constant
|
||||
np.random.seed(1)
|
||||
|
||||
class VAEScene(Scene):
|
||||
"""Scene object for a Variational Autoencoder and Autoencoder"""
|
||||
|
||||
def construct(self):
|
||||
# Set Scene config
|
||||
vae = VariationalAutoencoder()
|
||||
mnist_image_handler = MNISTImageHandler()
|
||||
image_pair = mnist_image_handler.image_pairs[3]
|
||||
vae.move_to(ORIGIN)
|
||||
vae.scale(1.3)
|
||||
self.play(Create(vae), run_time=3)
|
||||
# Make a forward pass animation
|
||||
forward_pass_animation = vae.make_forward_pass_animation(image_pair)
|
||||
self.play(forward_pass_animation)
|
||||
# Remove the input and output images
|
||||
reset_animation = vae.make_reset_vae_animation()
|
||||
self.play(reset_animation)
|
||||
# Interpolation animation
|
||||
interpolation_images = mnist_image_handler.interpolation_images
|
||||
interpolation_animation = vae.make_interpolation_animation(interpolation_images)
|
||||
self.play(interpolation_animation)
|
||||
|
||||
self.play(Create(vae))
|
||||
self.play(vae.make_forward_pass_animation(run_time=15))
|
||||
|
Reference in New Issue
Block a user