Files
Varuna Jayasiri 8d1b6ba010 translations
2022-08-30 16:28:56 +05:30

248 lines
21 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="si">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="labml.ai විනෝටේටඩ් පයිටෝච් කඩදාසි ක්රියාත්මක කිරීම්"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/index.html"/>
<meta property="og:title" content="labml.ai විනෝටේටඩ් පයිටෝච් කඩදාසි ක්රියාත්මක කිරීම්"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="labml.ai විනෝටේටඩ් පයිටෝච් කඩදාසි ක්රියාත්මක කිරීම්"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="labml.ai විනෝටේටඩ් පයිටෝච් කඩදාසි ක්රියාත්මක කිරීම්"/>
<meta property="og:description" content=""/>
<title>labml.ai විනෝටේටඩ් පයිටෝච් කඩදාසි ක්රියාත්මක කිරීම්</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="./pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
</p>
<p>
<a href="https://github.com/sponsors/labmlai" target="_blank">
<img alt="Sponsor"
src="https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86"
style="max-width:100%;"/></a>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/__init__.py" target="_blank">
View code on Github</a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1><a href="index.html">labml.ai විනෝටේටඩ් පයිටෝච් කඩදාසි ක්රියාත්මක කිරීම්</a></h1>
<p>මෙයස්නායුක ජාල සහ අදාළ ඇල්ගොරිතම සරල PyTorch ක්රියාත්මක කිරීමේ එකතුවකි. <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations">මෙම ක්රියාත්මක කිරීම්</a> පැහැදිලි කිරීම් සමඟ ලේඛනගත කර ඇති අතර <a href="index.html">වෙබ් අඩවිය</a> මේවා පැති විසින්-ආකෘතිගත සටහන් ලෙස ඉදිරිපත් කරයි. මෙම ඇල්ගොරිතම වඩා හොඳින් තේරුම් ගැනීමට මේවා ඔබට උපකාරී වනු ඇතැයි අපි විශ්වාස කරමු. </p>
<p><img alt="Screenshot" src="dqn-light.png"></p>
<p>අපිමෙම අළුත්වැඩියා කිරීම සක්රියව පවත්වා ගෙන යන අතර නව ක්රියාත්මක කිරීම් එකතු කරමු. <a href="https://twitter.com/labmlai"><img alt="Twitter" src="https://img.shields.io/twitter/follow/labmlai?style=social"></a> යාවත්කාලීන කිරීම් සඳහා. </p>
<h2>කඩදාසික්රියාත්මක කිරීම්</h2>
<h4><a href="transformers/index.html">ට්රාන්ස්ෆෝමර්</a></h4>
<ul><li><a href="transformers/mha.html">බහු ශීර්ෂ අවධානය</a> </li>
<li><a href="transformers/models.html">ට්රාන්ස්ෆෝමර් ගොඩනැගිලි කොටස්</a> </li>
<li><a href="transformers/xl/index.html">ට්රාන්ස්ෆෝමර් 40</a> </li>
<li><a href="transformers/xl/relative_mha.html">සාපේක්ෂ බහු-ශීර්ෂ අවධානය</a> </li>
<li><a href="transformers/rope/index.html">රොටරි ස්ථානීය කාවැද්දීම් (කඹය)</a> </li>
<li><a href="transformers/alibi/index.html">රේඛීය පක්ෂග්රාහී (අලිබී) සමඟ අවධානය යොමු කරන්න</a> </li>
<li><a href="transformers/retro/index.html">රෙට්රො</a> </li>
<li><a href="transformers/compressive/index.html">සම්පීඩ්යතා ට්රාන්ස්ෆෝමර්</a> </li>
<li><a href="transformers/gpt/index.html">Gpt ගෘහ නිර්මාණ ශිල්පය</a> </li>
<li><a href="transformers/glu_variants/simple.html">GLU ප්රභේද</a> </li>
<li><a href="transformers/knn/index.html">KNN-LM: කටපාඩම් කිරීම තුළින් සාමාන්යකරණය</a> </li>
<li><a href="transformers/feedback/index.html">ප්රතිපෝෂණ ට්රාන්ස්ෆෝමර්</a> </li>
<li><a href="transformers/switch/index.html">ට්රාන්ස්ෆෝමර් ස්විචය</a> </li>
<li><a href="transformers/fast_weights/index.html">වේගවත් බර ට්රාන්ස්ෆෝමර්</a> </li>
<li><a href="transformers/fnet/index.html">FNet</a> </li>
<li><a href="transformers/aft/index.html">අවධානය නිදහස් ට්රාන්ස්ෆෝමර්</a> </li>
<li><a href="transformers/mlm/index.html">වෙස් භාෂා ආකෘතිය</a> </li>
<li><a href="transformers/mlp_mixer/index.html">එම්එල්පී-මික්සර්: දැක්ම සඳහා සර්ව එම්එල්පී ගෘහ නිර්මාණ ශිල්පයක්</a> </li>
<li><a href="transformers/gmlp/index.html">MLPs (GMLP) වෙත අවධානය යොමු කරන්න</a> </li>
<li><a href="transformers/vit/index.html">දර්ශන ට්රාන්ස්ෆෝමර් (VIT)</a> </li>
<li><a href="transformers/primer_ez/index.html">ප්රයිමර් EZ</a> </li>
<li><a href="transformers/hour_glass/index.html">Hourglass</a></li></ul>
<h4><a href="recurrent_highway_networks/index.html">පුනරාවර්තන අධිවේගී මාර්ග ජාල</a></h4>
<h4><a href="lstm/index.html">LSTM</a></h4>
<h4><a href="hypernetworks/hyper_lstm.html">හයිපර්නෙට්වර්ක්ස් - හයිපර්එල්එස්එම්</a></h4>
<h4><a href="resnet/index.html">රෙස්නෙට්</a></h4>
<h4><a href="conv_mixer/index.html">කොන්වී මික්සර්</a></h4>
<h4><a href="capsule_networks/index.html">කැප්සියුල ජාල</a></h4>
<h4><a href="unet/index.html">යූ-නෙට්</a></h4>
<h4><a href="gan/index.html">උත්පාදක අහිතකර ජාල</a></h4>
<ul><li><a href="gan/original/index.html">මුල් GAN</a> </li>
<li><a href="gan/dcgan/index.html">ගැඹුරු සංවහන ජාලයක් සහිත GAN</a> </li>
<li><a href="gan/cycle_gan/index.html">චක්රය GAN</a> </li>
<li><a href="gan/wasserstein/index.html">වොසර්ස්ටයින් GAN</a> </li>
<li><a href="gan/wasserstein/gradient_penalty/index.html">ග්රේඩියන්ට් දඬුවම සමඟ වොසර්ස්ටයින් GAN</a> </li>
<li><a href="gan/stylegan/index.html">Styleගන් 2</a></li></ul>
<h4><a href="diffusion/index.html">විසරණ ආකෘති</a></h4>
<ul><li><a href="diffusion/ddpm/index.html">විසරණ සම්භාවිතාව ආකෘති නිරූපණය කිරීම (DDPM)</a></li></ul>
<h4><a href="sketch_rnn/index.html">කටු සටහනක් RNN</a></h4>
<h4>✨ප්රස්තාරය ස්නායුක ජාල</h4>
<ul><li><a href="graphs/gat/index.html">ප්රස්තාරය අවධානය ජාල (GAT)</a> </li>
<li><a href="graphs/gatv2/index.html">ප්රස්තාරය අවධානය ජාල v2 (GATV2)</a></li></ul>
<h4><a href="cfr/index.html">ප්රතිවිරුද්ධ කනගාටුව අවම කිරීම (CFR)</a></h4>
<p>CFRසමඟ පෝකර් වැනි අසම්පූර්ණ තොරතුරු සහිත ක්රීඩා විසඳීම. </p>
<ul><li><a href="cfr/kuhn/index.html">කුන් පෝකර්</a></li></ul>
<h4><a href="rl/index.html">ආරකෂාවට ඉගෙනුම්</a></h4>
<ul><li><a href="rl/ppo/index.html"><a href="rl/ppo/gae.html">සාමාන්යකරණය කළ වාසි ඇස්තමේන්තුව සමඟ ප්රොක්සිමල් ප්රතිපත්ති ප්රශස්තිකරණය</a> </a> </li>
<li><a href="rl/dqn/model.html">ඩලිං</a> <a href="rl/dqn/index.html">නෙට්වර්ක්, <a href="rl/dqn/replay_buffer.html">ප්රමුඛතා නැවත ධාවනය</a> සහ ද්විත්ව Q ජාලය සමඟ ගැඹුරු</a> Q ජාල. </li></ul>
<h4><a href="optimizers/index.html">ප්රශස්තකරණය</a></h4>
<ul><li><a href="optimizers/adam.html">ආදම්</a> </li>
<li><a href="optimizers/amsgrad.html">AMSGrad</a> </li>
<li><a href="optimizers/adam_warmup.html">උණුසුම් කිරීම සමඟ ආදම් ප්රශස්තකරණය</a> </li>
<li><a href="optimizers/noam.html">නව ප්රශස්තකරණය</a> </li>
<li><a href="optimizers/radam.html">නිවැරදි කරන ලද ආදම් ප්රශස්තකරණය</a> </li>
<li><a href="optimizers/ada_belief.html">ADABelief ප්රශස්තකරණය</a></li></ul>
<h4><a href="normalization/index.html">සාමාන්යකරණය ස්ථර</a></h4>
<ul><li><a href="normalization/batch_norm/index.html">කණ්ඩායම් සාමාන්යකරණය</a> </li>
<li><a href="normalization/layer_norm/index.html">ස්ථරය සාමාන්යකරණය</a> </li>
<li><a href="normalization/instance_norm/index.html">උදාහරණයක් සාමාන්යකරණය</a> </li>
<li><a href="normalization/group_norm/index.html">කණ්ඩායම් සාමාන්යකරණය</a> </li>
<li><a href="normalization/weight_standardization/index.html">බර ප්රමිතිකරණය</a> </li>
<li><a href="normalization/batch_channel_norm/index.html">කණ්ඩායම-නාලිකා සාමාන්යකරණය</a> </li>
<li><a href="normalization/deep_norm/index.html">ගැඹුරු සම්මතය</a></li></ul>
<h4><a href="distillation/index.html">ආසවනය</a></h4>
<h4><a href="adaptive_computation/index.html">අනුවර්තී ගණනය</a></h4>
<ul><li><a href="adaptive_computation/ponder_net/index.html">පොන්ඩර්නෙට්</a></li></ul>
<h4><a href="uncertainty/index.html">අවිනිශ්චිතතාව</a></h4>
<ul><li><a href="uncertainty/evidence/index.html">වර්ගීකරණ අවිනිශ්චිතතාව ප්රමාණ කිරීම සඳහා ගැඹුරු ඉගෙනීම</a></li></ul>
<h4><a href="activations/index.html">සක්රීය කිරීම්</a></h4>
<ul><li><a href="activations/fta/index.html">නොපැහැදිලි ටයිල් ක්රියාකාරකම්</a></li></ul>
<h4><a href="sampling/index.html">නියැදි ක්රම</a></h4>
<ul><li><a href="sampling/greedy.html">කෑදර නියැදීම</a> </li>
<li><a href="sampling/temperature.html">උෂ්ණත්ව නියැදීම</a> </li>
<li><a href="sampling/top_k.html">ඉහළ-K නියැදීම්</a> </li>
<li><a href="sampling/nucleus.html">න්යෂ්ටික නියැදීම</a></li></ul>
<h4><a href="neox/index.html">ජීපීටී-නියෝක්ස් එලියුටර්</a></h4>
<ul><li><a href="neox/samples/generate.html">48GB GPU මත ජනනය කරන්න</a> </li>
<li><a href="neox/samples/finetune.html">48GB GPU දෙකක් මත අවසන් කරන්න</a> </li>
<li><a href="neox/utils/llm_int8.html">LLM.INT8 ()</a></li></ul>
<h4><a href="scaling/index.html">පරිමාණ කළ හැකි පුහුණුව/අනුමානය</a></h4>
<ul><li><a href="scaling/zero3/index.html">Zero3 මතක ප්රශස්තිකරණය</a></li></ul>
<h2>උද්දීපනයකරන ලද පර්යේෂණ පත්රිකාව PDFs</h2>
<ul><li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.10628.pdf">Autoregressive Search Engines: Generating Substrings as Document Identifiers</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.15556.pdf">Training Compute-Optimal Large Language Models</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1910.02054.pdf">ZeRO: Memory Optimizations Toward Training Trillion Parameter Models</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2204.02311.pdf">PaLM: Scaling Language Modeling with Pathways</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/dall-e-2.pdf">Hierarchical Text-Conditional Image Generation with CLIP Latents</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2203.14465.pdf">STaR: Self-Taught Reasoner Bootstrapping Reasoning With Reasoning</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2112.04426.pdf">Improving language models by retrieving from trillions of tokens</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2003.08934.pdf">NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1706.03762.pdf">Attention Is All You Need</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2006.11239.pdf">Denoising Diffusion Probabilistic Models</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.08668.pdf">Primer: Searching for Efficient Transformers for Language Modeling</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1803.02999.pdf">On First-Order Meta-Learning Algorithms</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2103.00020.pdf">Learning Transferable Visual Models From Natural Language Supervision</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/2109.02869.pdf">The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/1805.09801.pdf">Meta-Gradient Reinforcement Learning</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/google_maps_eta.pdf">ETA Prediction with Graph Neural Networks in Google Maps</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/ponder_net.pdf">PonderNet: Learning to Ponder</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/muzero.pdf">Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/gans_n_roses.pdf">GANs N Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/vit.pdf">An Image is Worth 16X16 Word: Transformers for Image Recognition at Scale</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/resnet.pdf">Deep Residual Learning for Image Recognition</a> </li>
<li><a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/papers/distillation.pdf">Distilling the Knowledge in a Neural Network</a></li></ul>
<h3>ස්ථාපනය</h3>
<pre class="highlight lang-bash"><code><span></span>pip install labml-nn</code></pre>
<h3>ලැබ්එම්එල්උපුටා දක්වමින්</h3>
<p>ඔබමෙය අධ්යයන පර්යේෂණ සඳහා භාවිතා කරන්නේ නම්, කරුණාකර පහත සඳහන් බයිටෙක්ස් ප්රවේශය භාවිතා කර එය උපුටා දක්වන්න. </p>
<pre class="highlight lang-bibtex"><code><span></span><span class="nc">@misc</span><span class="p">{</span><span class="nl">labml</span><span class="p">,</span><span class="w"></span>
<span class="w"> </span><span class="na">author</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{Varuna Jayasiri, Nipun Wijerathne}</span><span class="p">,</span><span class="w"></span>
<span class="w"> </span><span class="na">title</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{labml.ai Annotated Paper Implementations}</span><span class="p">,</span><span class="w"></span>
<span class="w"> </span><span class="na">year</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{2020}</span><span class="p">,</span><span class="w"></span>
<span class="w"> </span><span class="na">url</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{}</span><span class="p">,</span><span class="w"></span>
<span class="p">}</span><span class="w"></span></code></pre>
</div>
<div class='code'>
<div class="highlight"><pre></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=./interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>