mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-10-27 12:05:47 +08:00
<!DOCTYPE html>
<html lang="zh">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
<meta name="twitter:title" content="胶囊网络"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/capsule_networks/readme.html"/>
<meta property="og:title" content="胶囊网络"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
<meta property="og:site_name" content="胶囊网络"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="胶囊网络"/>
<meta property="og:description" content=""/>
<title>胶囊网络</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/capsule_networks/readme.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">capsule_networks</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/capsule_networks/readme.md" target="_blank">
View code on Github</a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1><a href="https://nn.labml.ai/capsule_networks/index.html">胶囊网络</a></h1>
<p>这是<a href="https://arxiv.org/abs/1710.09829">胶囊间动态路由</a>的 <a href="https://pytorch.org">PyTorch</a> 实现/教程。</p>
<p>Capsule 网络是一种神经网络架构,它以胶囊的形式嵌入特征,并通过投票机制将它们路由到下一层胶囊。</p>
<p>与其他模型实现不同,我们提供了一个示例,因为仅使用模块很难理解某些概念。<a href="mnist.html">这是使用胶囊对 MNIST 数据集进行分类的模型的带注释的代码</a></p>
<p>该文件包含了 Capsule Networks 核心模块的实现。</p>
<p>我用 <a href="https://github.com/jindongwang/Pytorch-CapsuleNet">jindongwang/pytorch-CapsuleNet</a> 来澄清我对这篇论文的一些困惑。</p>
<p>这是一本在 MNIST 数据集上训练 Capsule 网络的笔记本。</p>
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/capsule_networks/mnist.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>
</div>
<div class='code'>
</div>
</div>
<div class='footer'>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=../interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>