Files
Varuna Jayasiri ef7268e89c si
2023-02-27 14:18:36 +05:30

443 lines
36 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="si">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="මෙය ප්රශස්තකරණය සඳහා වින්යාසගත කළ හැකි මොඩියුලයක් ක්රියාත්මක කරයි."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="වින්යාසගත ප්රශස්තිකරණ මොඩියුලය"/>
<meta name="twitter:description" content="මෙය ප්රශස්තකරණය සඳහා වින්යාසගත කළ හැකි මොඩියුලයක් ක්රියාත්මක කරයි."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/optimizers/configs.html"/>
<meta property="og:title" content="වින්යාසගත ප්රශස්තිකරණ මොඩියුලය"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="වින්යාසගත ප්රශස්තිකරණ මොඩියුලය"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="වින්යාසගත ප්රශස්තිකරණ මොඩියුලය"/>
<meta property="og:description" content="මෙය ප්රශස්තකරණය සඳහා වින්යාසගත කළ හැකි මොඩියුලයක් ක්රියාත්මක කරයි."/>
<title>වින්යාසගත ප්රශස්තිකරණ මොඩියුලය</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/optimizers/configs.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">optimizers</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/optimizers/configs.py" target="_blank">
View code on Github</a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>මානකලහැකි ප්රශස්තකරණය</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">10</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Tuple</span>
<span class="lineno">11</span>
<span class="lineno">12</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">13</span>
<span class="lineno">14</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">BaseConfigs</span><span class="p">,</span> <span class="n">option</span><span class="p">,</span> <span class="n">meta_config</span>
<span class="lineno">15</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers</span> <span class="kn">import</span> <span class="n">WeightDecay</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<p> <a id="OptimizerConfigs"></a></p>
<h2>ප්රශස්තකරණවින්යාසයන්</h2>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">18</span><span class="k">class</span> <span class="nc">OptimizerConfigs</span><span class="p">(</span><span class="n">BaseConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>ප්රශස්තකරණය </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">26</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>සිරුරේබර ක්ෂය </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">29</span> <span class="n">weight_decay_obj</span><span class="p">:</span> <span class="n">WeightDecay</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>බරක්ෂය වීම දිරාපත් වේද; එනම් බර ක්ෂය වීම අනුක්රමික වලට එකතු නොවේ </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">32</span> <span class="n">weight_decouple</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>සිරුරේබර ක්ෂය </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">34</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>බරක්ෂය වීම නිරපේක්ෂ හෝ ඉගෙනුම් අනුපාතය ගුණ කළ යුතු ද යන්න </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">36</span> <span class="n">weight_decay_absolute</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>ආදම්යාවත්කාලීන වීමත යන්න (විවිධ epsilon) </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">39</span> <span class="n">optimized_adam_update</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>ප්රශස්තිකරණයකළ යුතු පරාමිතීන් </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="n">parameters</span><span class="p">:</span> <span class="nb">any</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>ඉගෙනුම්අනුපාතය <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.0037em;">α</span></span></span></span></span> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span> <span class="n">learning_rate</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>ආදම් <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05278em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> සඳහා බීටා අගයන් </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">47</span> <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>ආදම් <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">ϵ</span></span></span></span></span> සඳහා එප්සිලන් </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-08</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>SGDසඳහා ගම්යතාව </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">momentum</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>AMSGradභාවිතා කළ යුතුද යන්න </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span> <span class="n">amsgrad</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>උනුසුම්ප්රශස්තිකරණ පියවර ගණන </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">57</span> <span class="n">warmup</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2_000</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>ප්රශස්තිකරණපියවර ගණන (කොසයින් ක්ෂය වීම සඳහා) </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">59</span> <span class="n">total_steps</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="mf">1e10</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Adeabeliefහි SGD වෙත පරිහානියට පත් විය යුතුද යන්න </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">62</span> <span class="n">degenerate_to_sgd</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Adameliefහි නිවැරදි කරන ලද ආදම් භාවිතා කළ යුතුද යන්න </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">65</span> <span class="n">rectify</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Noamප්රශස්තකරණය සඳහා ආදර්ශ කාවැද්දීම ප්රමාණය </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">68</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">71</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">_primary</span><span class="o">=</span><span class="s1">&#39;optimizer&#39;</span><span class="p">)</span>
<span class="lineno">72</span>
<span class="lineno">73</span>
<span class="lineno">74</span><span class="n">meta_config</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">parameters</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">77</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="s1">&#39;L2&#39;</span><span class="p">)</span>
<span class="lineno">78</span><span class="k">def</span> <span class="nf">_weight_decay</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">79</span> <span class="k">return</span> <span class="n">WeightDecay</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">weight_decouple</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">weight_decay_absolute</span><span class="p">)</span>
<span class="lineno">80</span>
<span class="lineno">81</span>
<span class="lineno">82</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;SGD&#39;</span><span class="p">)</span>
<span class="lineno">83</span><span class="k">def</span> <span class="nf">_sgd_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">84</span> <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">momentum</span><span class="p">,</span>
<span class="lineno">85</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">)</span>
<span class="lineno">86</span>
<span class="lineno">87</span>
<span class="lineno">88</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;Adam&#39;</span><span class="p">)</span>
<span class="lineno">89</span><span class="k">def</span> <span class="nf">_adam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">90</span> <span class="k">if</span> <span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">:</span>
<span class="lineno">91</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.amsgrad</span> <span class="kn">import</span> <span class="n">AMSGrad</span>
<span class="lineno">92</span> <span class="k">return</span> <span class="n">AMSGrad</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
<span class="lineno">93</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="lineno">94</span> <span class="n">optimized_update</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">optimized_adam_update</span><span class="p">,</span>
<span class="lineno">95</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">)</span>
<span class="lineno">96</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">97</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.adam</span> <span class="kn">import</span> <span class="n">Adam</span>
<span class="lineno">98</span> <span class="k">return</span> <span class="n">Adam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
<span class="lineno">99</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="lineno">100</span> <span class="n">optimized_update</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">optimized_adam_update</span><span class="p">,</span>
<span class="lineno">101</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">)</span>
<span class="lineno">102</span>
<span class="lineno">103</span>
<span class="lineno">104</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;AdamW&#39;</span><span class="p">)</span>
<span class="lineno">105</span><span class="k">def</span> <span class="nf">_adam_warmup_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">106</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.adam_warmup</span> <span class="kn">import</span> <span class="n">AdamWarmup</span>
<span class="lineno">107</span> <span class="k">return</span> <span class="n">AdamWarmup</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
<span class="lineno">108</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="lineno">109</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">warmup</span><span class="p">)</span>
<span class="lineno">110</span>
<span class="lineno">111</span>
<span class="lineno">112</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;RAdam&#39;</span><span class="p">)</span>
<span class="lineno">113</span><span class="k">def</span> <span class="nf">_radam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">114</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.radam</span> <span class="kn">import</span> <span class="n">RAdam</span>
<span class="lineno">115</span> <span class="k">return</span> <span class="n">RAdam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
<span class="lineno">116</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="lineno">117</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span>
<span class="lineno">118</span> <span class="n">degenerated_to_sgd</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">degenerate_to_sgd</span><span class="p">)</span>
<span class="lineno">119</span>
<span class="lineno">120</span>
<span class="lineno">121</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;AdaBelief&#39;</span><span class="p">)</span>
<span class="lineno">122</span><span class="k">def</span> <span class="nf">_ada_belief_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">123</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.ada_belief</span> <span class="kn">import</span> <span class="n">AdaBelief</span>
<span class="lineno">124</span> <span class="k">return</span> <span class="n">AdaBelief</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
<span class="lineno">125</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="lineno">126</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span>
<span class="lineno">127</span> <span class="n">degenerate_to_sgd</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">degenerate_to_sgd</span><span class="p">,</span>
<span class="lineno">128</span> <span class="n">rectify</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">rectify</span><span class="p">)</span>
<span class="lineno">129</span>
<span class="lineno">130</span>
<span class="lineno">131</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;Noam&#39;</span><span class="p">)</span>
<span class="lineno">132</span><span class="k">def</span> <span class="nf">_noam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">133</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.noam</span> <span class="kn">import</span> <span class="n">Noam</span>
<span class="lineno">134</span> <span class="k">return</span> <span class="n">Noam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
<span class="lineno">135</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="lineno">136</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">warmup</span><span class="p">,</span>
<span class="lineno">137</span> <span class="n">d_model</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">)</span>
<span class="lineno">138</span>
<span class="lineno">139</span>
<span class="lineno">140</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;AdamWarmupCosineDecay&#39;</span><span class="p">)</span>
<span class="lineno">141</span><span class="k">def</span> <span class="nf">_noam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">142</span> <span class="kn">from</span> <span class="nn">labml_nn.optimizers.adam_warmup_cosine_decay</span> <span class="kn">import</span> <span class="n">AdamWarmupCosineDecay</span>
<span class="lineno">143</span> <span class="k">return</span> <span class="n">AdamWarmupCosineDecay</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span>
<span class="lineno">144</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="lineno">145</span> <span class="n">weight_decay</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">weight_decay_obj</span><span class="p">,</span> <span class="n">amsgrad</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">amsgrad</span><span class="p">,</span>
<span class="lineno">146</span> <span class="n">warmup</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">warmup</span><span class="p">,</span> <span class="n">total_steps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">total_steps</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=../interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>