Files
Varuna Jayasiri f28b2f4a35 📚 instance norm
2021-04-23 15:20:21 +05:30

331 lines
25 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="dataloader.py"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/cnn/utils/dataloader.html"/>
<meta property="og:title" content="dataloader.py"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="dataloader.py"/>
<meta property="og:description" content=""/>
<title>dataloader.py</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/cnn/utils/dataloader.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">cnn</a>
<a class="parent" href="index.html">utils</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/cnn/utils/dataloader.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
rel="nofollow">
<img alt="Join Slact"
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">3</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">4</span><span class="kn">import</span> <span class="nn">torchvision</span>
<span class="lineno">5</span><span class="kn">import</span> <span class="nn">torchvision.transforms</span> <span class="k">as</span> <span class="nn">transforms</span>
<span class="lineno">6</span><span class="kn">from</span> <span class="nn">torch.utils.data</span> <span class="kn">import</span> <span class="n">Dataset</span><span class="p">,</span> <span class="n">random_split</span>
<span class="lineno">7</span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="lineno">8</span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">10</span><span class="k">def</span> <span class="nf">LoadCifar10DatasetTrain</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">transform</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="lineno">11</span> <span class="n">trainset</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">CIFAR10</span><span class="p">(</span><span class="n">root</span><span class="o">=</span><span class="n">save</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="lineno">12</span> <span class="n">download</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">transform</span><span class="o">=</span><span class="n">transform</span><span class="p">)</span>
<span class="lineno">13</span> <span class="k">return</span> <span class="n">trainset</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">15</span><span class="k">def</span> <span class="nf">LoadCifar10DatasetTest</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">transform</span><span class="p">):</span>
<span class="lineno">16</span> <span class="k">return</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">CIFAR10</span><span class="p">(</span><span class="n">root</span><span class="o">=</span><span class="n">save</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="lineno">17</span> <span class="n">download</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">transform</span><span class="o">=</span><span class="n">transform</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">19</span><span class="k">def</span> <span class="nf">GetCustTransform</span><span class="p">():</span>
<span class="lineno">20</span> <span class="n">transform_train</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="lineno">21</span> <span class="n">transforms</span><span class="o">.</span><span class="n">RandomRotation</span><span class="p">(</span><span class="mi">20</span><span class="p">),</span>
<span class="lineno">22</span> <span class="n">transforms</span><span class="o">.</span><span class="n">RandomCrop</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">pad_if_needed</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">padding_mode</span><span class="o">=</span><span class="s1">&#39;constant&#39;</span><span class="p">),</span>
<span class="lineno">23</span> <span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="lineno">24</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))])</span>
<span class="lineno">25</span> <span class="k">return</span> <span class="n">transform_train</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">27</span><span class="k">def</span> <span class="nf">Dataloader_train_valid</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>See utils/dataloader.py for data augmentations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">30</span> <span class="n">transform_train_valid</span> <span class="o">=</span> <span class="n">GetCustTransform</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Get Cifar 10 Datasets</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">33</span> <span class="n">trainset</span> <span class="o">=</span> <span class="n">LoadCifar10DatasetTrain</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">transform_train_valid</span><span class="p">)</span>
<span class="lineno">34</span> <span class="n">train_val_abs</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">trainset</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.8</span><span class="p">)</span>
<span class="lineno">35</span> <span class="n">train_subset</span><span class="p">,</span> <span class="n">val_subset</span> <span class="o">=</span> <span class="n">random_split</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="p">[</span><span class="n">train_val_abs</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">trainset</span><span class="p">)</span> <span class="o">-</span> <span class="n">train_val_abs</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Get Cifar 10 Dataloaders</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">38</span> <span class="n">trainloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">train_subset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="lineno">39</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
<span class="lineno">40</span>
<span class="lineno">41</span> <span class="n">valloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">val_subset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="lineno">42</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
<span class="lineno">43</span> <span class="k">return</span> <span class="n">trainloader</span><span class="p">,</span> <span class="n">valloader</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span><span class="k">def</span> <span class="nf">Dataloader_train</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>See utils/dataloader.py for data augmentations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">48</span> <span class="n">transform_train</span> <span class="o">=</span> <span class="n">GetCustTransform</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Get Cifar 10 Datasets</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">51</span> <span class="n">trainset</span> <span class="o">=</span> <span class="n">LoadCifar10DatasetTrain</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">transform_train</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Get Cifar 10 Dataloaders</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">53</span> <span class="n">trainloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="lineno">54</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
<span class="lineno">55</span>
<span class="lineno">56</span> <span class="k">return</span> <span class="n">trainloader</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">58</span><span class="k">def</span> <span class="nf">Dataloader_test</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>transformation test set</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">61</span> <span class="n">transform_test</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">(</span>
<span class="lineno">62</span> <span class="p">[</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="lineno">63</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))])</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>initialize test dataset and dataloader</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">66</span> <span class="n">testset</span> <span class="o">=</span> <span class="n">LoadCifar10DatasetTest</span><span class="p">(</span><span class="n">save</span><span class="p">,</span> <span class="n">transform_test</span><span class="p">)</span>
<span class="lineno">67</span> <span class="n">testloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">testset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span>
<span class="lineno">68</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
<span class="lineno">69</span>
<span class="lineno">70</span> <span class="k">return</span> <span class="n">testloader</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">72</span><span class="k">def</span> <span class="nf">imshow</span><span class="p">(</span><span class="n">im</span><span class="p">):</span>
<span class="lineno">73</span> <span class="n">image</span> <span class="o">=</span> <span class="n">im</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="lineno">74</span> <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="lineno">75</span> <span class="n">image</span> <span class="o">=</span> <span class="n">image</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))</span> <span class="c1"># unnormalize</span>
<span class="lineno">76</span> <span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
<span class="lineno">77</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">79</span><span class="k">def</span> <span class="nf">imretrun</span><span class="p">(</span><span class="n">im</span><span class="p">):</span>
<span class="lineno">80</span> <span class="n">image</span> <span class="o">=</span> <span class="n">im</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="lineno">81</span> <span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="lineno">82</span> <span class="n">image</span> <span class="o">=</span> <span class="n">image</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))</span> <span class="c1"># unnormalize</span>
<span class="lineno">83</span> <span class="k">return</span> <span class="n">image</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
</body>
</html>