mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-15 10:11:39 +08:00
<!DOCTYPE html> <html lang="zh"> <head> <meta http-equiv="content-type" content="text/html;charset=utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1.0"/> <meta name="description" content=""/> <meta name="twitter:card" content="summary"/> <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/> <meta name="twitter:title" content="压缩变压器"/> <meta name="twitter:description" content=""/> <meta name="twitter:site" content="@labmlai"/> <meta name="twitter:creator" content="@labmlai"/> <meta property="og:url" content="https://nn.labml.ai/transformers/compressive/readme.html"/> <meta property="og:title" content="压缩变压器"/> <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/> <meta property="og:site_name" content="压缩变压器"/> <meta property="og:type" content="object"/> <meta property="og:title" content="压缩变压器"/> <meta property="og:description" content=""/> <title>压缩变压器</title> <link rel="shortcut icon" href="/icon.png"/> <link rel="stylesheet" href="../../pylit.css?v=1"> <link rel="canonical" href="https://nn.labml.ai/transformers/compressive/readme.html"/> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous"> <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script> <script> window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('js', new Date()); gtag('config', 'G-4V3HC8HBLH'); </script> </head> <body> <div id='container'> <div id="background"></div> <div class='section'> <div class='docs'> <p> <a class="parent" href="/">home</a> <a class="parent" href="../index.html">transformers</a> <a class="parent" href="index.html">compressive</a> </p> <p> <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank"> <img alt="Github" src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social" style="max-width:100%;"/></a> <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank"> <img alt="Twitter" src="https://img.shields.io/twitter/follow/labmlai?style=social" style="max-width:100%;"/></a> </p> <p> <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/compressive/readme.md" target="_blank"> View code on Github</a> </p> </div> </div> <div class='section' id='section-0'> <div class='docs'> <div class='section-link'> <a href='#section-0'>#</a> </div> <h1><a href="https://nn.labml.ai/transformers/compressive/index.html">压缩变压器</a></h1> <p>这是 <a href="https://pytorch.org">PyTorch</a> 中<a href="https://papers.labml.ai/paper/1911.05507">用于远程序列建模的压缩转换器的</a>实现。</p> <p>这是 Transfor <a href="https://nn.labml.ai/transformers/xl/index.html">mer XL</a> 的扩展,它压缩了过去的记忆以提供更长的注意力范围。也就是说,最远的<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqd" style=""><span class="mord" style=""><span class="mord mathnormal" style="">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqf" style="">c</span></span><span class="mord mathnormal mtight" style="">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mord coloredeq eqf" style=""><span class="mord mathnormal" style="">c</span></span></span></span></span></span>内存被压缩到<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord coloredeq eqd" style=""><span class="mord" style=""><span class="mord mathnormal" style="">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqf" style="">c</span></span><span class="mord mathnormal mtight" style="">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span>内存中,压缩率在<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord coloredeq eqf" style=""><span class="mord mathnormal" style="">c</span></span></span></span></span></span>哪里。</p> <h2>压缩操作</h2> <p>压缩操作定义为<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqe" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqf" style="">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8491079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mord mtight coloredeq eqf" style=""><span class="mord mathnormal mtight" style="">c</span></span><span class="mbin mtight">×</span><span class="mord mathnormal mtight">d</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8491079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbb">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mbin mtight">×</span><span class="mord mathnormal mtight">d</span></span></span></span></span></span></span></span></span></span></span></span></span>。本文介绍了多种选择<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqe" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqf" style="">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span>,我们只实现了一维卷积,这似乎可以给出最佳结果。每个层都有单独的压缩操作<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord coloredeq eqg" style=""><span class="mord mathnormal" style="">i</span></span></span></span></span></span>,<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.16678em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord coloredeq eqe" style=""><span class="mord" style=""><span class="mord mathnormal" style="margin-right:0.10764em">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight coloredeq eqf" style="">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.97234em;"><span style="top:-3.14734em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight coloredeq eqg" style=""><span class="mord mathnormal mtight" style="">i</span></span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span></span>其中是层号。</p> <h2>训练压缩操作</h2> <p>由于使用 BPTT 训练压缩需要维护非常大的计算图(许多时间步长),因此该论文提出了<em>自动编码损失</em>和<em>注意力重建损失</em>。自动编码丢失对压缩存储器中的原始存储器进行解码并计算损失。注意力重建损失计算压缩内存和未压缩内存上的多头注意力结果,并得出两者之间的平均平方误差。我们在这里实现了后者,因为它可以提供更好的结果。</p> <p>该实现使用层前标准化,而论文使用层后归一化。前层范数在 <a href="../feedforward.html">FFN</a> 和自我注意力之前对层进行范数,并且残差连接中的直通未标准化。在标准变压器设置中,这应该更稳定。</p> <p>以下是用于<a href="https://nn.labml.ai/transformers/compressive/experiment.html">在 Tiny Shakespeare 数据集上训练压缩变压器模型的训练代码</a>和笔记本。</p> <p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/transformers/compressive/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p> </div> <div class='code'> </div> </div> <div class='footer'> <a href="https://papers.labml.ai">Trending Research Papers</a> <a href="https://labml.ai">labml.ai</a> </div> </div> <script src=../../interactive.js?v=1"></script> <script> function handleImages() { var images = document.querySelectorAll('p>img') for (var i = 0; i < images.length; ++i) { handleImage(images[i]) } } function handleImage(img) { img.parentElement.style.textAlign = 'center' var modal = document.createElement('div') modal.id = 'modal' var modalContent = document.createElement('div') modal.appendChild(modalContent) var modalImage = document.createElement('img') modalContent.appendChild(modalImage) var span = document.createElement('span') span.classList.add('close') span.textContent = 'x' modal.appendChild(span) img.onclick = function () { console.log('clicked') document.body.appendChild(modal) modalImage.src = img.src } span.onclick = function () { document.body.removeChild(modal) } } handleImages() </script> </body> </html>