mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 10:48:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			255 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			255 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html lang="en">
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content=""/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="optimizer.py"/>
 | |
|     <meta name="twitter:description" content=""/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/helpers/optimizer.html"/>
 | |
|     <meta property="og:title" content="optimizer.py"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="optimizer.py"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="optimizer.py"/>
 | |
|     <meta property="og:description" content=""/>
 | |
| 
 | |
|     <title>optimizer.py</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../pylit.css?v=1">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/helpers/optimizer.html"/>
 | |
|     <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
 | |
| 
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="index.html">helpers</a>
 | |
|             </p>
 | |
|             <p>
 | |
|                 <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|             <p>
 | |
|                 <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/helpers/optimizer.py" target="_blank">
 | |
|                     View code on Github</a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|         <div class='docs'>
 | |
|             <div class='section-link'>
 | |
|                 <a href='#section-0'>#</a>
 | |
|             </div>
 | |
|             
 | |
|         </div>
 | |
|         <div class='code'>
 | |
|             <div class="highlight"><pre><span class="lineno">1</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Tuple</span>
 | |
| <span class="lineno">2</span>
 | |
| <span class="lineno">3</span><span class="kn">import</span> <span class="nn">torch</span>
 | |
| <span class="lineno">4</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">tracker</span>
 | |
| <span class="lineno">5</span>
 | |
| <span class="lineno">6</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">BaseConfigs</span><span class="p">,</span> <span class="n">option</span><span class="p">,</span> <span class="n">meta_config</span></pre></div>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-1'>
 | |
|         <div class='docs doc-strings'>
 | |
|             <div class='section-link'>
 | |
|                 <a href='#section-1'>#</a>
 | |
|             </div>
 | |
|             <p> This creates a configurable optimizer.</p>
 | |
| <p>Arguments:  learning_rate (float): Learning rate of the optimizer. Defaults to <code  class="highlight"><span></span></code>
 | |
| 0.01<code  class="highlight"><span></span></code>
 | |
| .  momentum (float): Momentum of the optimizer. Defaults to <code  class="highlight"><span></span></code>
 | |
| 0.5<code  class="highlight"><span></span></code>
 | |
| .  parameters: Model parameters to optimize.  d_model (int): Embedding size of the model (for Noam optimizer).  betas (Tuple<a href="float, float">float, float</a>): Betas for Adam optimizer. Defaults to <code  class="highlight"><span></span></code>
 | |
| (0.9, 0.999)<code  class="highlight"><span></span></code>
 | |
| .  eps (float): Epsilon for Adam/RMSProp optimizers. Defaults to <code  class="highlight"><span></span></code>
 | |
| 1e-8<code  class="highlight"><span></span></code>
 | |
| .  step_factor (int): Step factor for Noam optimizer. Defaults to <code  class="highlight"><span></span></code>
 | |
| 1024<code  class="highlight"><span></span></code>
 | |
| .</p>
 | |
| <p>Also there is a better (more options) implementation in <code  class="highlight"><span></span></code>
 | |
| labml_nn<code  class="highlight"><span></span></code>
 | |
| . <code  class="highlight"><span></span><span class="n">We</span> <span class="n">recommend</span> <span class="n">using</span> <span class="n">that</span> <span class="o"><</span><span class="n">https</span><span class="p">:</span><span class="o">//</span><span class="n">nn</span><span class="o">.</span><span class="n">labml</span><span class="o">.</span><span class="n">ai</span><span class="o">/</span><span class="n">optimizers</span><span class="o">/</span><span class="n">configs</span><span class="o">.</span><span class="n">html</span><span class="o">></span></code>
 | |
| _.</p>
 | |
| 
 | |
|         </div>
 | |
|         <div class='code'>
 | |
|             <div class="highlight"><pre><span class="lineno">9</span><span class="k">class</span> <span class="nc">OptimizerConfigs</span><span class="p">(</span><span class="n">BaseConfigs</span><span class="p">):</span></pre></div>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-2'>
 | |
|         <div class='docs'>
 | |
|             <div class='section-link'>
 | |
|                 <a href='#section-2'>#</a>
 | |
|             </div>
 | |
|             
 | |
|         </div>
 | |
|         <div class='code'>
 | |
|             <div class="highlight"><pre><span class="lineno">26</span>    <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span>
 | |
| <span class="lineno">27</span>    <span class="n">learning_rate</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span>
 | |
| <span class="lineno">28</span>    <span class="n">momentum</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span>
 | |
| <span class="lineno">29</span>    <span class="n">parameters</span><span class="p">:</span> <span class="nb">any</span>
 | |
| <span class="lineno">30</span>    <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span>
 | |
| <span class="lineno">31</span>    <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">)</span>
 | |
| <span class="lineno">32</span>    <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-8</span>
 | |
| <span class="lineno">33</span>    <span class="n">step_factor</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1024</span></pre></div>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-3'>
 | |
|         <div class='docs'>
 | |
|             <div class='section-link'>
 | |
|                 <a href='#section-3'>#</a>
 | |
|             </div>
 | |
|             
 | |
|         </div>
 | |
|         <div class='code'>
 | |
|             <div class="highlight"><pre><span class="lineno">35</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
 | |
| <span class="lineno">36</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">_primary</span><span class="o">=</span><span class="s1">'optimizer'</span><span class="p">)</span>
 | |
| <span class="lineno">37</span>
 | |
| <span class="lineno">38</span>
 | |
| <span class="lineno">39</span><span class="n">meta_config</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">parameters</span><span class="p">)</span></pre></div>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-4'>
 | |
|         <div class='docs'>
 | |
|             <div class='section-link'>
 | |
|                 <a href='#section-4'>#</a>
 | |
|             </div>
 | |
|             
 | |
|         </div>
 | |
|         <div class='code'>
 | |
|             <div class="highlight"><pre><span class="lineno">42</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'SGD'</span><span class="p">)</span>
 | |
| <span class="lineno">43</span><span class="k">def</span> <span class="nf">sgd_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
 | |
| <span class="lineno">44</span>    <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span>
 | |
| <span class="lineno">45</span>
 | |
| <span class="lineno">46</span>
 | |
| <span class="lineno">47</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'Adam'</span><span class="p">)</span>
 | |
| <span class="lineno">48</span><span class="k">def</span> <span class="nf">adam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
 | |
| <span class="lineno">49</span>    <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span>
 | |
| <span class="lineno">50</span>                            <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
 | |
| <span class="lineno">51</span>
 | |
| <span class="lineno">52</span>
 | |
| <span class="lineno">53</span><span class="k">class</span> <span class="nc">NoamOpt</span><span class="p">:</span>
 | |
| <span class="lineno">54</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">learning_rate</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">warmup</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">step_factor</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">):</span>
 | |
| <span class="lineno">55</span>        <span class="bp">self</span><span class="o">.</span><span class="n">step_factor</span> <span class="o">=</span> <span class="n">step_factor</span>
 | |
| <span class="lineno">56</span>        <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span> <span class="o">=</span> <span class="n">optimizer</span>
 | |
| <span class="lineno">57</span>        <span class="bp">self</span><span class="o">.</span><span class="n">warmup</span> <span class="o">=</span> <span class="n">warmup</span>
 | |
| <span class="lineno">58</span>        <span class="bp">self</span><span class="o">.</span><span class="n">learning_rate</span> <span class="o">=</span> <span class="n">learning_rate</span>
 | |
| <span class="lineno">59</span>        <span class="bp">self</span><span class="o">.</span><span class="n">model_size</span> <span class="o">=</span> <span class="n">model_size</span>
 | |
| <span class="lineno">60</span>        <span class="bp">self</span><span class="o">.</span><span class="n">_rate</span> <span class="o">=</span> <span class="mi">0</span>
 | |
| <span class="lineno">61</span>
 | |
| <span class="lineno">62</span>    <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
 | |
| <span class="lineno">63</span>        <span class="n">rate</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rate</span><span class="p">(</span><span class="n">tracker</span><span class="o">.</span><span class="n">get_global_step</span><span class="p">()</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">step_factor</span><span class="p">)</span>
 | |
| <span class="lineno">64</span>        <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span>
 | |
| <span class="lineno">65</span>            <span class="n">p</span><span class="p">[</span><span class="s1">'lr'</span><span class="p">]</span> <span class="o">=</span> <span class="n">rate</span>
 | |
| <span class="lineno">66</span>        <span class="bp">self</span><span class="o">.</span><span class="n">_rate</span> <span class="o">=</span> <span class="n">rate</span>
 | |
| <span class="lineno">67</span>        <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
 | |
| <span class="lineno">68</span>
 | |
| <span class="lineno">69</span>    <span class="k">def</span> <span class="nf">rate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">step</span><span class="p">):</span>
 | |
| <span class="lineno">70</span>        <span class="n">factor</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_size</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span> <span class="o">*</span> <span class="nb">min</span><span class="p">(</span><span class="n">step</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="p">),</span> <span class="n">step</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">warmup</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">1.5</span><span class="p">))</span>
 | |
| <span class="lineno">71</span>        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">learning_rate</span> <span class="o">*</span> <span class="n">factor</span>
 | |
| <span class="lineno">72</span>
 | |
| <span class="lineno">73</span>    <span class="k">def</span> <span class="nf">zero_grad</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
 | |
| <span class="lineno">74</span>        <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
 | |
| <span class="lineno">75</span>
 | |
| <span class="lineno">76</span>
 | |
| <span class="lineno">77</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">'Noam'</span><span class="p">)</span>
 | |
| <span class="lineno">78</span><span class="k">def</span> <span class="nf">noam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
 | |
| <span class="lineno">79</span>    <span class="n">optimizer</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
 | |
| <span class="lineno">80</span>    <span class="k">return</span> <span class="n">NoamOpt</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2000</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">step_factor</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">)</span>
 | |
| <span class="lineno">81</span>
 | |
| <span class="lineno">82</span>
 | |
| <span class="lineno">83</span><span class="k">def</span> <span class="nf">_test_noam_optimizer</span><span class="p">():</span>
 | |
| <span class="lineno">84</span>    <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
 | |
| <span class="lineno">85</span>    <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
 | |
| <span class="lineno">86</span>
 | |
| <span class="lineno">87</span>    <span class="n">opts</span> <span class="o">=</span> <span class="p">[</span><span class="n">NoamOpt</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4000</span><span class="p">,</span> <span class="kc">None</span><span class="p">),</span>
 | |
| <span class="lineno">88</span>            <span class="n">NoamOpt</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">8000</span><span class="p">,</span> <span class="kc">None</span><span class="p">),</span>
 | |
| <span class="lineno">89</span>            <span class="n">NoamOpt</span><span class="p">(</span><span class="mi">2048</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2000</span><span class="p">,</span> <span class="kc">None</span><span class="p">)]</span>
 | |
| <span class="lineno">90</span>    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20000</span><span class="p">),</span> <span class="p">[[</span><span class="n">opt</span><span class="o">.</span><span class="n">rate</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">opt</span> <span class="ow">in</span> <span class="n">opts</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20000</span><span class="p">)])</span>
 | |
| <span class="lineno">91</span>    <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">([</span><span class="s2">"512:4000"</span><span class="p">,</span> <span class="s2">"512:8000"</span><span class="p">,</span> <span class="s2">"256:4000"</span><span class="p">])</span>
 | |
| <span class="lineno">92</span>    <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Optimizer"</span><span class="p">)</span>
 | |
| <span class="lineno">93</span>    <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
 | |
| <span class="lineno">94</span>
 | |
| <span class="lineno">95</span>
 | |
| <span class="lineno">96</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
 | |
| <span class="lineno">97</span>    <span class="n">_test_noam_optimizer</span><span class="p">()</span></pre></div>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='footer'>
 | |
|         <a href="https://labml.ai">labml.ai</a>
 | |
|     </div>
 | |
| </div>
 | |
| <script src=../interactive.js?v=1"></script>
 | |
| <script>
 | |
|     function handleImages() {
 | |
|         var images = document.querySelectorAll('p>img')
 | |
| 
 | |
|         for (var i = 0; i < images.length; ++i) {
 | |
|             handleImage(images[i])
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     function handleImage(img) {
 | |
|         img.parentElement.style.textAlign = 'center'
 | |
| 
 | |
|         var modal = document.createElement('div')
 | |
|         modal.id = 'modal'
 | |
| 
 | |
|         var modalContent = document.createElement('div')
 | |
|         modal.appendChild(modalContent)
 | |
| 
 | |
|         var modalImage = document.createElement('img')
 | |
|         modalContent.appendChild(modalImage)
 | |
| 
 | |
|         var span = document.createElement('span')
 | |
|         span.classList.add('close')
 | |
|         span.textContent = 'x'
 | |
|         modal.appendChild(span)
 | |
| 
 | |
|         img.onclick = function () {
 | |
|             console.log('clicked')
 | |
|             document.body.appendChild(modal)
 | |
|             modalImage.src = img.src
 | |
|         }
 | |
| 
 | |
|         span.onclick = function () {
 | |
|             document.body.removeChild(modal)
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     handleImages()
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
