mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 14:29:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			153 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE html>
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | 
						|
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | 
						|
    <meta name="description" content="This is a collection of PyTorch implementations/tutorials of reinforcement learning algorithms. It currently includes Proximal Policy Optimization, Generalized Advantage Estimation, and Deep Q Networks."/>
 | 
						|
 | 
						|
    <meta name="twitter:card" content="summary"/>
 | 
						|
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta name="twitter:title" content="Reinforcement Learning Algorithms"/>
 | 
						|
    <meta name="twitter:description" content="This is a collection of PyTorch implementations/tutorials of reinforcement learning algorithms. It currently includes Proximal Policy Optimization, Generalized Advantage Estimation, and Deep Q Networks."/>
 | 
						|
    <meta name="twitter:site" content="@labmlai"/>
 | 
						|
    <meta name="twitter:creator" content="@labmlai"/>
 | 
						|
 | 
						|
    <meta property="og:url" content="https://nn.labml.ai/rl/index.html"/>
 | 
						|
    <meta property="og:title" content="Reinforcement Learning Algorithms"/>
 | 
						|
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta property="og:site_name" content="LabML Neural Networks"/>
 | 
						|
    <meta property="og:type" content="object"/>
 | 
						|
    <meta property="og:title" content="Reinforcement Learning Algorithms"/>
 | 
						|
    <meta property="og:description" content="This is a collection of PyTorch implementations/tutorials of reinforcement learning algorithms. It currently includes Proximal Policy Optimization, Generalized Advantage Estimation, and Deep Q Networks."/>
 | 
						|
 | 
						|
    <title>Reinforcement Learning Algorithms</title>
 | 
						|
    <link rel="shortcut icon" href="/icon.png"/>
 | 
						|
    <link rel="stylesheet" href="../pylit.css">
 | 
						|
    <link rel="canonical" href="https://nn.labml.ai/rl/index.html"/>
 | 
						|
    <!-- Global site tag (gtag.js) - Google Analytics -->
 | 
						|
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | 
						|
    <script>
 | 
						|
        window.dataLayer = window.dataLayer || [];
 | 
						|
 | 
						|
        function gtag() {
 | 
						|
            dataLayer.push(arguments);
 | 
						|
        }
 | 
						|
 | 
						|
        gtag('js', new Date());
 | 
						|
 | 
						|
        gtag('config', 'G-4V3HC8HBLH');
 | 
						|
    </script>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<div id='container'>
 | 
						|
    <div id="background"></div>
 | 
						|
    <div class='section'>
 | 
						|
        <div class='docs'>
 | 
						|
            <p>
 | 
						|
                <a class="parent" href="/">home</a>
 | 
						|
                <a class="parent" href="index.html">rl</a>
 | 
						|
            </p>
 | 
						|
            <p>
 | 
						|
 | 
						|
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/rl/__init__.py">
 | 
						|
                    <img alt="Github"
 | 
						|
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
                <a href="https://twitter.com/labmlai"
 | 
						|
                   rel="nofollow">
 | 
						|
                    <img alt="Twitter"
 | 
						|
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
            </p>
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
    <div class='section' id='section-0'>
 | 
						|
        <div class='docs doc-strings'>
 | 
						|
            <div class='section-link'>
 | 
						|
                <a href='#section-0'>#</a>
 | 
						|
            </div>
 | 
						|
            <h1>Reinforcement Learning Algorithms</h1>
 | 
						|
<ul>
 | 
						|
<li><a href="ppo">Proximal Policy Optimization</a><ul>
 | 
						|
<li><a href="ppo/experiment.html">This is an experiment</a> that runs a PPO agent on Atari Breakout.</li>
 | 
						|
<li><a href="ppo/gae.html">Generalized advantage estimation</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
<li><a href="dqn">Deep Q Networks</a><ul>
 | 
						|
<li><a href="dqn/experiment.html">This is an experiment</a> that runs a DQN agent on Atari Breakout.</li>
 | 
						|
<li><a href="dqn/model.html">Model</a> with dueling network</li>
 | 
						|
<li><a href="dqn/replay_buffer.html">Prioritized Experience Replay Buffer</a></li>
 | 
						|
</ul>
 | 
						|
</li>
 | 
						|
</ul>
 | 
						|
<p><a href="game.html">This is the implementation for OpenAI game wrapper</a> using <code>multiprocessing</code>.</p>
 | 
						|
        </div>
 | 
						|
        <div class='code'>
 | 
						|
            <div class="highlight"><pre></pre></div>
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
    <div class='footer'>
 | 
						|
        <a href="https://papers.labml.ai">Trending Research Papers</a>
 | 
						|
        <a href="https://labml.ai">labml.ai</a>
 | 
						|
    </div>
 | 
						|
</div>
 | 
						|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | 
						|
</script>
 | 
						|
<!-- MathJax configuration -->
 | 
						|
<script type="text/x-mathjax-config">
 | 
						|
    MathJax.Hub.Config({
 | 
						|
        tex2jax: {
 | 
						|
            inlineMath: [ ['$','$'] ],
 | 
						|
            displayMath: [ ['$$','$$'] ],
 | 
						|
            processEscapes: true,
 | 
						|
            processEnvironments: true
 | 
						|
        },
 | 
						|
        // Center justify equations in code and markdown cells. Elsewhere
 | 
						|
        // we use CSS to left justify single line equations in code cells.
 | 
						|
        displayAlign: 'center',
 | 
						|
        "HTML-CSS": { fonts: ["TeX"] }
 | 
						|
    });
 | 
						|
 | 
						|
</script>
 | 
						|
<script>
 | 
						|
    function handleImages() {
 | 
						|
        var images = document.querySelectorAll('p>img')
 | 
						|
 | 
						|
        console.log(images);
 | 
						|
        for (var i = 0; i < images.length; ++i) {
 | 
						|
            handleImage(images[i])
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    function handleImage(img) {
 | 
						|
        img.parentElement.style.textAlign = 'center'
 | 
						|
 | 
						|
        var modal = document.createElement('div')
 | 
						|
        modal.id = 'modal'
 | 
						|
 | 
						|
        var modalContent = document.createElement('div')
 | 
						|
        modal.appendChild(modalContent)
 | 
						|
 | 
						|
        var modalImage = document.createElement('img')
 | 
						|
        modalContent.appendChild(modalImage)
 | 
						|
 | 
						|
        var span = document.createElement('span')
 | 
						|
        span.classList.add('close')
 | 
						|
        span.textContent = 'x'
 | 
						|
        modal.appendChild(span)
 | 
						|
 | 
						|
        img.onclick = function () {
 | 
						|
            console.log('clicked')
 | 
						|
            document.body.appendChild(modal)
 | 
						|
            modalImage.src = img.src
 | 
						|
        }
 | 
						|
 | 
						|
        span.onclick = function () {
 | 
						|
            document.body.removeChild(modal)
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    handleImages()
 | 
						|
</script>
 | 
						|
</body>
 | 
						|
</html> |