Files
2025-07-20 09:13:11 +05:30

170 lines
5.0 KiB
Python

"""
---
title: Training a U-Net on Carvana dataset
summary: >
Code for training a U-Net model on Carvana dataset.
---
# Training [U-Net](index.html)
This trains a [U-Net](index.html) model on [Carvana dataset](carvana.html).
You can find the download instructions
[on Kaggle](https://www.kaggle.com/competitions/carvana-image-masking-challenge/data).
Save the training images inside `carvana/train` folder and the masks in `carvana/train_masks` folder.
For simplicity, we do not do a training and validation split.
"""
import numpy as np
import torchvision.transforms.functional
import torch
import torch.utils.data
from labml import lab, tracker, experiment, monit
from labml.configs import BaseConfigs
from labml_nn.helpers.device import DeviceConfigs
from labml_nn.unet import UNet
from labml_nn.unet.carvana import CarvanaDataset
from torch import nn
class Configs(BaseConfigs):
"""
## Configurations
"""
# Device to train the model on.
# [`DeviceConfigs`](../helpers/device.html)
# picks up an available CUDA device or defaults to CPU.
device: torch.device = DeviceConfigs()
# [U-Net](index.html) model
model: UNet
# Number of channels in the image. $3$ for RGB.
image_channels: int = 3
# Number of channels in the output mask. $1$ for binary mask.
mask_channels: int = 1
# Batch size
batch_size: int = 1
# Learning rate
learning_rate: float = 2.5e-4
# Number of training epochs
epochs: int = 4
# Dataset
dataset: CarvanaDataset
# Dataloader
data_loader: torch.utils.data.DataLoader
# Loss function
loss_func = nn.BCELoss()
# Sigmoid function for binary classification
sigmoid = nn.Sigmoid()
# Adam optimizer
optimizer: torch.optim.Adam
def init(self):
# Initialize the [Carvana dataset](carvana.html)
self.dataset = CarvanaDataset(lab.get_data_path() / 'carvana' / 'train',
lab.get_data_path() / 'carvana' / 'train_masks')
# Initialize the model
self.model = UNet(self.image_channels, self.mask_channels).to(self.device)
# Create dataloader
self.data_loader = torch.utils.data.DataLoader(self.dataset, self.batch_size,
shuffle=True, pin_memory=True)
# Create optimizer
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate)
# Image logging
tracker.set_image("sample", True)
@torch.no_grad()
def sample(self, idx=-1):
"""
### Sample images
"""
# Get a random sample
x, _ = self.dataset[np.random.randint(len(self.dataset))]
# Move data to device
x = x.to(self.device)
# Get predicted mask
mask = self.sigmoid(self.model(x[None, :]))
# Crop the image to the size of the mask
x = torchvision.transforms.functional.center_crop(x, [mask.shape[2], mask.shape[3]])
# Log samples
tracker.save('sample', x * mask)
def train(self):
"""
### Train for an epoch
"""
# Iterate through the dataset.
# Use [`mix`](https://docs.labml.ai/api/monit.html#labml.monit.mix)
# to sample $50$ times per epoch.
for _, (image, mask) in monit.mix(('Train', self.data_loader), (self.sample, list(range(50)))):
# Increment global step
tracker.add_global_step()
# Move data to device
image, mask = image.to(self.device), mask.to(self.device)
# Make the gradients zero
self.optimizer.zero_grad()
# Get predicted mask logits
logits = self.model(image)
# Crop the target mask to the size of the logits. Size of the logits will be smaller if we
# don't use padding in convolutional layers in the U-Net.
mask = torchvision.transforms.functional.center_crop(mask, [logits.shape[2], logits.shape[3]])
# Calculate loss
loss = self.loss_func(self.sigmoid(logits), mask)
# Compute gradients
loss.backward()
# Take an optimization step
self.optimizer.step()
# Track the loss
tracker.save('loss', loss)
def run(self):
"""
### Training loop
"""
for _ in monit.loop(self.epochs):
# Train the model
self.train()
# New line in the console
tracker.new_line()
# Save the model
def main():
# Create experiment
experiment.create(name='unet')
# Create configurations
configs = Configs()
# Set configurations. You can override the defaults by passing the values in the dictionary.
experiment.configs(configs, {})
# Initialize
configs.init()
# Set models for saving and loading
experiment.add_pytorch_models({'model': configs.model})
# Start and run the training loop
with experiment.start():
configs.run()
#
if __name__ == '__main__':
main()