mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-10-29 17:57:14 +08:00
<!DOCTYPE html>
<html lang="zh">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
<meta name="twitter:title" content="变压器 XL"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/transformers/xl/readme.html"/>
<meta property="og:title" content="变压器 XL"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
<meta property="og:site_name" content="变压器 XL"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="变压器 XL"/>
<meta property="og:description" content=""/>
<title>变压器 XL</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/transformers/xl/readme.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">transformers</a>
<a class="parent" href="index.html">xl</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/xl/readme.md" target="_blank">
View code on Github</a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1><a href="https://nn.labml.ai/transformers/xl/index.html">变压器 XL</a></h1>
<p>这是 <a href="https://pytorch.org">PyTorch 中 Transfor</a> <a href="https://arxiv.org/abs/1901.02860">mer-XL:超越固定长度上下文的专心语言模型</a>的实现。</p>
<p>Transformer 的注意力跨度有限,等于并行训练序列的长度。所有这些位置都有固定的位置编码。Transformer XL 通过让每个位置关注过去预先计算的嵌入次数,从而延长了这种注意力跨度。例如,如果上下文长度为<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord coloredeq eqa" style=""><span class="mord mathnormal" style="margin-right:0.01968em">l</span></span></span></span></span></span>,它将保留前一批长度的所有层的嵌入<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord coloredeq eqa" style=""><span class="mord mathnormal" style="margin-right:0.01968em">l</span></span></span></span></span></span>并将其馈送到当前步骤。如果我们使用固定位置编码,这些预先计算的嵌入将与当前上下文具有相同的位置。它们引入了相对位置编码,其中位置编码是在注意力计算时引入的。</p>
<p>相对多头注意力的带注释的实现已经开始<a href="https://nn.labml.ai/transformers/xl/relative_mha.html"><code class="highlight"><span></span><span class="n">relative_mha</span><span class="o">.</span><span class="n">py</span></code>
</a>了。</p>
<p>这是用于<a href="https://nn.labml.ai/transformers/xl/experiment.html">在 Tiny Shakespeare 数据集上训练 transformer XL 模型的训练代码</a>和笔记本。</p>
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/transformers/xl/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>
</div>
<div class='code'>
</div>
</div>
<div class='footer'>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=../../interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>