Files
2024-06-21 19:35:22 +05:30
..
2024-06-21 19:35:22 +05:30
2024-06-21 19:35:22 +05:30
2024-06-21 19:35:22 +05:30
2024-06-21 19:35:22 +05:30

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="zh">
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>

    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta name="twitter:title" content="在神经网络中提炼知识"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>

    <meta property="og:url" content="https://nn.labml.ai/distillation/readme.html"/>
    <meta property="og:title" content="在神经网络中提炼知识"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta property="og:site_name" content="在神经网络中提炼知识"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="在神经网络中提炼知识"/>
    <meta property="og:description" content=""/>

    <title>在神经网络中提炼知识</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../pylit.css?v=1">
    <link rel="canonical" href="https://nn.labml.ai/distillation/readme.html"/>
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">

    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];

        function gtag() {
            dataLayer.push(arguments);
        }

        gtag('js', new Date());

        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="index.html">distillation</a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/distillation/readme.md" target="_blank">
                    View code on Github</a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
        <div class='docs'>
            <div class='section-link'>
                <a href='#section-0'>#</a>
            </div>
            <h1><a href="https://nn.labml.ai/distillation/index.html">在神经网络中提炼知识</a></h1>
<p>这是论文《<a href="https://arxiv.org/abs/1503.02531">在神经网络中提炼知识》的 PyT</a> <a href="https://pytorch.org">orch</a> 实现/教程。</p>
<p>这是一种使用经过训练的大型网络中的知识来训练小型网络的方法;即从大型网络中提炼知识。</p>
<p>直接在数据和标签上训练时,具有正则化或模型集合(使用 dropout的大型模型比小型模型的概化效果更好。但是在大型模型的帮助下可以训练小模型以更好地进行概括。较小的模型在生产中更好速度更快、计算更少、内存更少。</p>
<p>经过训练的模型的输出概率比标签提供的信息更多,因为它也会为错误的类分配非零概率。这些概率告诉我们,样本有可能属于某些类别。例如,在对数字进行分类时,当给定数字 <em>7</em> 的图像时广义模型会给出7的高概率给2的概率很小但不是零而给其他数字分配几乎为零的概率。蒸馏利用这些信息来更好地训练小型模型。</p>

        </div>
        <div class='code'>
            
        </div>
    </div>
    <div class='footer'>
        <a href="https://labml.ai">labml.ai</a>
    </div>
</div>
<script src=../interactive.js?v=1"></script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')

        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }

    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'

        var modal = document.createElement('div')
        modal.id = 'modal'

        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)

        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)

        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)

        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }

        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }

    handleImages()
</script>
</body>
</html>