mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 06:16:05 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			128 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			128 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE html>
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | 
						|
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | 
						|
    <meta name="description" content=""/>
 | 
						|
 | 
						|
    <meta name="twitter:card" content="summary"/>
 | 
						|
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta name="twitter:title" content="Proximal Policy Optimization - PPO"/>
 | 
						|
    <meta name="twitter:description" content=""/>
 | 
						|
    <meta name="twitter:site" content="@labmlai"/>
 | 
						|
    <meta name="twitter:creator" content="@labmlai"/>
 | 
						|
 | 
						|
    <meta property="og:url" content="https://nn.labml.ai/rl/ppo/readme.html"/>
 | 
						|
    <meta property="og:title" content="Proximal Policy Optimization - PPO"/>
 | 
						|
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta property="og:site_name" content="LabML Neural Networks"/>
 | 
						|
    <meta property="og:type" content="object"/>
 | 
						|
    <meta property="og:title" content="Proximal Policy Optimization - PPO"/>
 | 
						|
    <meta property="og:description" content=""/>
 | 
						|
 | 
						|
    <title>Proximal Policy Optimization - PPO</title>
 | 
						|
    <link rel="shortcut icon" href="/icon.png"/>
 | 
						|
    <link rel="stylesheet" href="../../pylit.css">
 | 
						|
    <link rel="canonical" href="https://nn.labml.ai/rl/ppo/readme.html"/>
 | 
						|
    <!-- Global site tag (gtag.js) - Google Analytics -->
 | 
						|
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | 
						|
    <script>
 | 
						|
        window.dataLayer = window.dataLayer || [];
 | 
						|
 | 
						|
        function gtag() {
 | 
						|
            dataLayer.push(arguments);
 | 
						|
        }
 | 
						|
 | 
						|
        gtag('js', new Date());
 | 
						|
 | 
						|
        gtag('config', 'G-4V3HC8HBLH');
 | 
						|
    </script>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<div id='container'>
 | 
						|
    <div id="background"></div>
 | 
						|
    <div class='section'>
 | 
						|
        <div class='docs'>
 | 
						|
            <p>
 | 
						|
                <a class="parent" href="/">home</a>
 | 
						|
                <a class="parent" href="../index.html">rl</a>
 | 
						|
                <a class="parent" href="index.html">ppo</a>
 | 
						|
            </p>
 | 
						|
            <p>
 | 
						|
 | 
						|
                <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/rl/ppo/readme.md">
 | 
						|
                    <img alt="Github"
 | 
						|
                         src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
                <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | 
						|
                   rel="nofollow">
 | 
						|
                    <img alt="Join Slact"
 | 
						|
                         src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
                <a href="https://twitter.com/labmlai"
 | 
						|
                   rel="nofollow">
 | 
						|
                    <img alt="Twitter"
 | 
						|
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
            </p>
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
    <div class='section' id='section-0'>
 | 
						|
            <div class='docs'>
 | 
						|
                <div class='section-link'>
 | 
						|
                    <a href='#section-0'>#</a>
 | 
						|
                </div>
 | 
						|
                <h1><a href="https://nn.labml.ai/rl/ppo/index.html">Proximal Policy Optimization - PPO</a></h1>
 | 
						|
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of
 | 
						|
<a href="https://arxiv.org/abs/1707.06347">Proximal Policy Optimization - PPO</a>.</p>
 | 
						|
<p>PPO is a policy gradient method for reinforcement learning.
 | 
						|
Simple policy gradient methods one do a single gradient update per sample (or a set of samples).
 | 
						|
Doing multiple gradient steps for a singe sample causes problems
 | 
						|
because the policy deviates too much producing a bad policy.
 | 
						|
PPO lets us do multiple gradient updates per sample by trying to keep the
 | 
						|
policy close to the policy that was used to sample data.
 | 
						|
It does so by clipping gradient flow if the updated policy
 | 
						|
is not close to the policy used to sample the data.</p>
 | 
						|
<p>You can find an experiment that uses it <a href="https://nn.labml.ai/rl/ppo/experiment.html">here</a>.
 | 
						|
The experiment uses <a href="https://nn.labml.ai/rl/ppo/gae.html">Generalized Advantage Estimation</a>.</p>
 | 
						|
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/rl/ppo/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
 | 
						|
<a href="https://app.labml.ai/run/6eff28a0910e11eb9b008db315936e2f"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
 | 
						|
            </div>
 | 
						|
            <div class='code'>
 | 
						|
                
 | 
						|
            </div>
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
</div>
 | 
						|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | 
						|
</script>
 | 
						|
<!-- MathJax configuration -->
 | 
						|
<script type="text/x-mathjax-config">
 | 
						|
    MathJax.Hub.Config({
 | 
						|
        tex2jax: {
 | 
						|
            inlineMath: [ ['$','$'] ],
 | 
						|
            displayMath: [ ['$$','$$'] ],
 | 
						|
            processEscapes: true,
 | 
						|
            processEnvironments: true
 | 
						|
        },
 | 
						|
        // Center justify equations in code and markdown cells. Elsewhere
 | 
						|
        // we use CSS to left justify single line equations in code cells.
 | 
						|
        displayAlign: 'center',
 | 
						|
        "HTML-CSS": { fonts: ["TeX"] }
 | 
						|
    });
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
</script>
 | 
						|
</body>
 | 
						|
</html> |