Files
Varuna Jayasiri 2927aa217b gpt notes
2021-01-14 09:37:12 +05:30

218 lines
6.3 KiB
Python

"""
---
title: Configurable Transformer Components
summary: These are configurable components that can be re-used quite easily.
---
# Configurable Transformer Components
"""
import copy
import torch.nn as nn
from labml.configs import BaseConfigs, option, calculate
from labml_helpers.module import Module
from .mha import MultiHeadAttention
from .models import EmbeddingsWithPositionalEncoding, EmbeddingsWithLearnedPositionalEncoding, FeedForward, \
TransformerLayer, Encoder, Decoder, Generator, EncoderDecoder
class TransformerConfigs(BaseConfigs):
"""
<a id="TransformerConfigs">
## Transformer Configurations
</a>
This defines configurations for a transformer.
The configurations are calculate using option functions.
These are lazy loaded and therefore only the necessary modules
are calculated.
"""
# Number of attention heads
n_heads: int = 8
# Transformer embedding size
d_model: int = 512
# Number of layers
n_layers: int = 6
# Number of features in position-wise feedforward layer
d_ff: int = 2048
# Dropout probability
dropout: float = 0.1
# Number of tokens in the source vocabulary (for token embeddings)
n_src_vocab: int
# Number of tokens in the target vocabulary (to generate logits for prediction)
n_tgt_vocab: int
# The encoder self attention
encoder_attn: MultiHeadAttention = 'mha'
# The decoder self attention
decoder_attn: MultiHeadAttention = 'mha'
# The decoder memory attention
decoder_mem_attn: MultiHeadAttention = 'mha'
# Position-wise feedforward layer
feed_forward: FeedForward
# Activation in position-wise feedforward layer
feed_forward_activation: nn.Module = 'ReLU'
# Encoder layer
encoder_layer: TransformerLayer = 'default'
# Decoder layer
decoder_layer: TransformerLayer = 'default'
# Encoder consisting of multiple encoder layers
encoder: Encoder = 'default'
# Encoder consisting of multiple decoder layers
decoder: Decoder = 'default'
# Embedding layer for source
src_embed: Module = 'fixed_pos'
# Embedding layer for target (for decoder)
tgt_embed: Module = 'fixed_pos'
# Logit generator for prediction
generator: Generator = 'default'
# Encoder-decoder
encoder_decoder: EncoderDecoder
@option(TransformerConfigs.feed_forward_activation, 'ReLU')
def _feed_forward_activation_relu():
"""
ReLU activation
"""
return nn.ReLU()
@option(TransformerConfigs.feed_forward_activation, 'GELU')
def _feed_forward_activation_relu():
"""
GELU activation
"""
return nn.GELU()
@option(TransformerConfigs.feed_forward, 'default')
def _feed_forward(c: TransformerConfigs):
"""
Create feedforward layer
"""
return FeedForward(c.d_model, c.d_ff, c.dropout, c.feed_forward_activation)
# ### Multi-head Attention
def _mha(c: TransformerConfigs):
return MultiHeadAttention(c.n_heads, c.d_model)
calculate(TransformerConfigs.encoder_attn, 'mha', _mha)
calculate(TransformerConfigs.decoder_attn, 'mha', _mha)
calculate(TransformerConfigs.decoder_mem_attn, 'mha', _mha)
# ### Relative Multi-head Attention
def _relative_mha(c: TransformerConfigs):
from .relative_mha import RelativeMultiHeadAttention
return RelativeMultiHeadAttention(c.n_heads, c.d_model)
calculate(TransformerConfigs.encoder_attn, 'relative', _relative_mha)
calculate(TransformerConfigs.decoder_attn, 'relative', _relative_mha)
calculate(TransformerConfigs.decoder_mem_attn, 'relative', _relative_mha)
@option(TransformerConfigs.encoder_layer, 'default')
def _encoder_layer(c: TransformerConfigs):
"""
Encoder layer
"""
return TransformerLayer(d_model=c.d_model, self_attn=c.encoder_attn,
src_attn=None, feed_forward=copy.deepcopy(c.feed_forward),
dropout_prob=c.dropout)
@option(TransformerConfigs.decoder_layer, 'default')
def _decoder_layer(c: TransformerConfigs):
"""
Decoder layer
"""
return TransformerLayer(d_model=c.d_model, self_attn=c.decoder_attn,
src_attn=c.decoder_mem_attn, feed_forward=copy.deepcopy(c.feed_forward),
dropout_prob=c.dropout)
@option(TransformerConfigs.encoder, 'default')
def _encoder(c: TransformerConfigs):
"""
Encoder
"""
return Encoder(c.encoder_layer, c.n_layers)
@option(TransformerConfigs.decoder, 'default')
def _decoder(c: TransformerConfigs):
"""
Decoder
"""
return Decoder(c.decoder_layer, c.n_layers)
@option(TransformerConfigs.generator, 'default')
def _generator(c: TransformerConfigs):
"""
Logit generator
"""
return Generator(c.n_tgt_vocab, c.d_model)
# ## Positional Embeddings
@option(TransformerConfigs.src_embed, 'fixed_pos')
def _src_embed_with_positional(c: TransformerConfigs):
"""
Source embedding with fixed positional encodings
"""
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_src_vocab)
@option(TransformerConfigs.tgt_embed, 'fixed_pos')
def _tgt_embed_with_positional(c: TransformerConfigs):
"""
Target embedding with fixed positional encodings
"""
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_tgt_vocab)
# ## Learned Positional Embeddings
@option(TransformerConfigs.src_embed, 'learned_pos')
def _src_embed_with_learned_positional(c: TransformerConfigs):
"""
Source embedding with learned positional encodings
"""
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_src_vocab)
@option(TransformerConfigs.tgt_embed, 'learned_pos')
def _tgt_embed_with_learned_positional(c: TransformerConfigs):
"""
Target embedding with learned positional encodings
"""
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_tgt_vocab)
# ## No Positional Embeddings
@option(TransformerConfigs.src_embed, 'no_pos')
def _src_embed_without_positional(c: TransformerConfigs):
"""
Source embedding without positional encodings
"""
return nn.Embedding(c.n_src_vocab, c.d_model)
@option(TransformerConfigs.tgt_embed, 'no_pos')
def _tgt_embed_without_positional(c: TransformerConfigs):
return nn.Embedding(c.n_tgt_vocab, c.d_model)
@option(TransformerConfigs.encoder_decoder, 'default')
def _encoder_decoder(c: TransformerConfigs):
return EncoderDecoder(c.encoder, c.decoder, c.src_embed, c.tgt_embed, c.generator)