Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

540 lines
48 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="cv_train.py"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/cnn/utils/cv_train.html"/>
<meta property="og:title" content="cv_train.py"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="cv_train.py"/>
<meta property="og:description" content=""/>
<title>cv_train.py</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/cnn/utils/cv_train.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">cnn</a>
<a class="parent" href="index.html">utils</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/cnn/utils/cv_train.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">3</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">4</span>
<span class="lineno">5</span><span class="kn">from</span> <span class="nn">torch.utils.data</span> <span class="kn">import</span> <span class="n">Subset</span>
<span class="lineno">6</span>
<span class="lineno">7</span><span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">KFold</span>
<span class="lineno">8</span><span class="kn">from</span> <span class="nn">torch.utils.data.sampler</span> <span class="kn">import</span> <span class="n">SubsetRandomSampler</span>
<span class="lineno">9</span><span class="kn">from</span> <span class="nn">models.cnn</span> <span class="kn">import</span> <span class="n">GetCNN</span>
<span class="lineno">10</span><span class="kn">from</span> <span class="nn">torchsummary</span> <span class="kn">import</span> <span class="n">summary</span>
<span class="lineno">11</span><span class="kn">import</span> <span class="nn">torch.optim</span> <span class="k">as</span> <span class="nn">optim</span>
<span class="lineno">12</span><span class="kn">import</span> <span class="nn">os</span>
<span class="lineno">13</span>
<span class="lineno">14</span><span class="kn">from</span> <span class="nn">torch.utils.tensorboard</span> <span class="kn">import</span> <span class="n">SummaryWriter</span>
<span class="lineno">15</span>
<span class="lineno">16</span><span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">datetime</span>
<span class="lineno">17</span><span class="kn">from</span> <span class="nn">glob</span> <span class="kn">import</span> <span class="n">glob</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">21</span><span class="k">def</span> <span class="nf">cross_val_train</span><span class="p">(</span><span class="n">cost</span><span class="p">,</span> <span class="n">trainset</span><span class="p">,</span> <span class="n">epochs</span><span class="p">,</span> <span class="n">splits</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="lineno">22</span>
<span class="lineno">23</span> <span class="n">patience</span> <span class="o">=</span> <span class="mi">4</span>
<span class="lineno">24</span> <span class="n">history</span> <span class="o">=</span> <span class="p">[]</span>
<span class="lineno">25</span> <span class="n">kf</span> <span class="o">=</span> <span class="n">KFold</span><span class="p">(</span><span class="n">n_splits</span><span class="o">=</span><span class="n">splits</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="lineno">26</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="mi">64</span>
<span class="lineno">27</span> <span class="n">now</span> <span class="o">=</span> <span class="n">datetime</span><span class="o">.</span><span class="n">now</span><span class="p">()</span>
<span class="lineno">28</span> <span class="n">date_time</span> <span class="o">=</span> <span class="n">now</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="s2">&quot;</span><span class="si">%d</span><span class="s2">-%m-%Y_%H:%M:%S&quot;</span><span class="p">)</span>
<span class="lineno">29</span> <span class="n">directory</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">dirname</span><span class="p">(</span><span class="s1">&#39;./save/tensorboard-</span><span class="si">%s</span><span class="s1">/&#39;</span><span class="o">%</span><span class="p">(</span><span class="n">date_time</span><span class="p">))</span>
<span class="lineno">30</span>
<span class="lineno">31</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">directory</span><span class="p">):</span>
<span class="lineno">32</span> <span class="n">os</span><span class="o">.</span><span class="n">mkdir</span><span class="p">(</span><span class="n">directory</span><span class="p">)</span>
<span class="lineno">33</span>
<span class="lineno">34</span> <span class="k">for</span> <span class="n">fold</span><span class="p">,</span> <span class="p">(</span><span class="n">train_index</span><span class="p">,</span> <span class="n">test_index</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">kf</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">trainset</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">trainset</span><span class="o">.</span><span class="n">targets</span><span class="p">)):</span> <span class="c1">#dataset required - compelete training set</span>
<span class="lineno">35</span> <span class="n">comment</span> <span class="o">=</span> <span class="sa">f</span><span class="s1">&#39;</span><span class="si">{</span><span class="n">directory</span><span class="si">}</span><span class="s1">/fold-</span><span class="si">{</span><span class="n">fold</span><span class="si">}</span><span class="s1">&#39;</span>
<span class="lineno">36</span> <span class="n">writer</span> <span class="o">=</span> <span class="n">SummaryWriter</span><span class="p">(</span><span class="n">log_dir</span><span class="o">=</span><span class="n">comment</span><span class="p">)</span>
<span class="lineno">37</span>
<span class="lineno">38</span> <span class="n">train_sampler</span> <span class="o">=</span> <span class="n">SubsetRandomSampler</span><span class="p">(</span><span class="n">train_index</span><span class="p">)</span>
<span class="lineno">39</span> <span class="n">valid_sampler</span> <span class="o">=</span> <span class="n">SubsetRandomSampler</span><span class="p">(</span><span class="n">test_index</span><span class="p">)</span>
<span class="lineno">40</span> <span class="n">traindata</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">sampler</span><span class="o">=</span><span class="n">train_sampler</span><span class="p">,</span>
<span class="lineno">41</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="lineno">42</span> <span class="n">valdata</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">sampler</span><span class="o">=</span><span class="n">valid_sampler</span><span class="p">,</span>
<span class="lineno">43</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="lineno">44</span>
<span class="lineno">45</span> <span class="n">net</span> <span class="o">=</span> <span class="n">GetCNN</span><span class="p">()</span>
<span class="lineno">46</span> <span class="n">net</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="lineno">47</span> <span class="k">if</span> <span class="n">fold</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span> <span class="c1">#Printing model detials for the first time</span>
<span class="lineno">48</span> <span class="n">summary</span><span class="p">(</span><span class="n">net</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>Specify optimizer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">optimizer</span> <span class="o">=</span> <span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">net</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.0005</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">))</span>
<span class="lineno">53</span> <span class="n">losses</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">epochs</span><span class="p">)</span>
<span class="lineno">54</span> <span class="n">accuracies</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">epochs</span><span class="p">)</span>
<span class="lineno">55</span> <span class="n">min_loss</span> <span class="o">=</span> <span class="kc">None</span>
<span class="lineno">56</span> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<span class="lineno">57</span> <span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">epochs</span><span class="p">):</span>
<span class="lineno">58</span> <span class="n">valid_loss</span> <span class="o">=</span> <span class="mi">0</span>
<span class="lineno">59</span> <span class="n">running_loss</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="lineno">60</span> <span class="n">epoch_loss</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="lineno">61</span> <span class="n">train_loss</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">epochs</span><span class="p">)</span>
<span class="lineno">62</span> <span class="n">train_steps</span> <span class="o">=</span> <span class="mf">0.0</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>training steps</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">65</span> <span class="n">net</span><span class="o">.</span><span class="n">train</span><span class="p">()</span> <span class="c1"># Enable Dropout</span>
<span class="lineno">66</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">traindata</span><span class="p">,</span> <span class="mi">0</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Get the inputs; data is a list of [inputs, labels]</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">68</span> <span class="k">if</span> <span class="n">device</span><span class="p">:</span>
<span class="lineno">69</span> <span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">),</span> <span class="n">data</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="lineno">70</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">71</span> <span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Forward + backward + optimize</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">74</span> <span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">images</span><span class="p">)</span>
<span class="lineno">75</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">cost</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
<span class="lineno">76</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="lineno">77</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Zero the parameter gradients</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">79</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Print loss</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">82</span> <span class="n">running_loss</span> <span class="o">+=</span> <span class="n">loss</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="lineno">83</span> <span class="n">epoch_loss</span> <span class="o">+=</span> <span class="n">loss</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="lineno">84</span> <span class="n">train_loss</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span> <span class="o">+=</span> <span class="n">loss</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="lineno">85</span> <span class="n">train_steps</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="lineno">86</span>
<span class="lineno">87</span> <span class="n">loss_train</span> <span class="o">=</span> <span class="n">train_loss</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span> <span class="o">/</span> <span class="n">train_steps</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Validation</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">90</span> <span class="n">loss_accuracy</span> <span class="o">=</span> <span class="n">Test</span><span class="p">(</span><span class="n">net</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span> <span class="n">valdata</span><span class="p">,</span> <span class="n">device</span><span class="p">)</span>
<span class="lineno">91</span>
<span class="lineno">92</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span> <span class="o">=</span> <span class="n">loss_accuracy</span><span class="p">[</span><span class="s1">&#39;val_loss&#39;</span><span class="p">]</span>
<span class="lineno">93</span> <span class="n">accuracies</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span> <span class="o">=</span> <span class="n">loss_accuracy</span><span class="p">[</span><span class="s1">&#39;val_acc&#39;</span><span class="p">]</span>
<span class="lineno">94</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Fold </span><span class="si">%d</span><span class="s2">, Epoch </span><span class="si">%d</span><span class="s2">, Train Loss </span><span class="si">%.4f</span><span class="s2"> Validation Loss: </span><span class="si">%.4f</span><span class="s2">, Validation Accuracy: </span><span class="si">%.4f</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">fold</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">epoch</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span> <span class="n">loss_train</span><span class="p">,</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">],</span> <span class="n">accuracies</span><span class="p">[</span><span class="n">epoch</span><span class="p">]))</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>TensorBoard</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">97</span> <span class="n">info</span> <span class="o">=</span> <span class="p">{</span>
<span class="lineno">98</span> <span class="s2">&quot;Loss/train&quot;</span><span class="p">:</span> <span class="n">loss_train</span><span class="p">,</span>
<span class="lineno">99</span> <span class="s2">&quot;Loss/valid&quot;</span><span class="p">:</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">],</span>
<span class="lineno">100</span> <span class="s2">&quot;Accuracy/valid&quot;</span><span class="p">:</span> <span class="n">accuracies</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span>
<span class="lineno">101</span> <span class="p">}</span>
<span class="lineno">102</span>
<span class="lineno">103</span> <span class="k">for</span> <span class="n">tag</span><span class="p">,</span> <span class="n">item</span> <span class="ow">in</span> <span class="n">info</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="lineno">104</span> <span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="n">tag</span><span class="p">,</span> <span class="n">item</span><span class="p">,</span> <span class="n">global_step</span><span class="o">=</span><span class="n">epoch</span><span class="p">)</span>
<span class="lineno">105</span>
<span class="lineno">106</span> <span class="k">if</span> <span class="n">min_loss</span> <span class="o">==</span> <span class="kc">None</span><span class="p">:</span>
<span class="lineno">107</span> <span class="n">min_loss</span> <span class="o">=</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Early stopping refered from https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">110</span> <span class="k">if</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">min_loss</span><span class="p">:</span>
<span class="lineno">111</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Epoch loss: </span><span class="si">%.4f</span><span class="s2">, Min loss: </span><span class="si">%.4f</span><span class="s2">&quot;</span><span class="o">%</span><span class="p">(</span><span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">],</span> <span class="n">min_loss</span><span class="p">))</span>
<span class="lineno">112</span> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="lineno">113</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Early stopping counter: </span><span class="si">{</span><span class="n">count</span><span class="si">}</span><span class="s1"> out of </span><span class="si">{</span><span class="n">patience</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
<span class="lineno">114</span> <span class="k">if</span> <span class="n">count</span> <span class="o">&gt;=</span> <span class="n">patience</span><span class="p">:</span>
<span class="lineno">115</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;############### EarlyStopping ##################&#39;</span><span class="p">)</span>
<span class="lineno">116</span> <span class="k">break</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Saving best model</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">119</span> <span class="k">elif</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span> <span class="o">&lt;=</span> <span class="n">min_loss</span><span class="p">:</span>
<span class="lineno">120</span> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<span class="lineno">121</span> <span class="n">save_best_model</span><span class="p">({</span>
<span class="lineno">122</span> <span class="s1">&#39;epoch&#39;</span><span class="p">:</span> <span class="n">epoch</span><span class="p">,</span>
<span class="lineno">123</span> <span class="s1">&#39;state_dict&#39;</span><span class="p">:</span> <span class="n">net</span><span class="o">.</span><span class="n">state_dict</span><span class="p">(),</span>
<span class="lineno">124</span> <span class="s1">&#39;optimizer&#39;</span><span class="p">:</span> <span class="n">optimizer</span><span class="o">.</span><span class="n">state_dict</span><span class="p">(),</span>
<span class="lineno">125</span> <span class="s1">&#39;accuracy&#39;</span> <span class="p">:</span> <span class="n">accuracies</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span>
<span class="lineno">126</span> <span class="p">},</span> <span class="n">fold</span><span class="o">=</span><span class="n">fold</span><span class="p">,</span> <span class="n">date_time</span><span class="o">=</span><span class="n">date_time</span><span class="p">)</span>
<span class="lineno">127</span> <span class="n">min_loss</span> <span class="o">=</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">]</span>
<span class="lineno">128</span>
<span class="lineno">129</span> <span class="n">history</span><span class="o">.</span><span class="n">append</span><span class="p">({</span><span class="s1">&#39;val_loss&#39;</span><span class="p">:</span> <span class="n">losses</span><span class="p">[</span><span class="n">epoch</span><span class="p">],</span> <span class="s1">&#39;val_acc&#39;</span><span class="p">:</span> <span class="n">accuracies</span><span class="p">[</span><span class="n">epoch</span><span class="p">]})</span>
<span class="lineno">130</span> <span class="k">return</span> <span class="n">history</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">132</span><span class="k">def</span> <span class="nf">save_best_model</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">fold</span><span class="p">,</span> <span class="n">date_time</span><span class="p">):</span>
<span class="lineno">133</span> <span class="n">directory</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">dirname</span><span class="p">(</span><span class="s2">&quot;./save/CV_models-</span><span class="si">%s</span><span class="s2">/&quot;</span><span class="o">%</span><span class="p">(</span><span class="n">date_time</span><span class="p">))</span>
<span class="lineno">134</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">directory</span><span class="p">):</span>
<span class="lineno">135</span> <span class="n">os</span><span class="o">.</span><span class="n">mkdir</span><span class="p">(</span><span class="n">directory</span><span class="p">)</span>
<span class="lineno">136</span> <span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="s2">&quot;</span><span class="si">%s</span><span class="s2">/fold-</span><span class="si">%d</span><span class="s2">-model.pt&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">directory</span><span class="p">,</span> <span class="n">fold</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">138</span><span class="k">def</span> <span class="nf">retreive_best_trial</span><span class="p">():</span>
<span class="lineno">139</span> <span class="n">PATH</span> <span class="o">=</span> <span class="s2">&quot;./save/&quot;</span>
<span class="lineno">140</span> <span class="n">best_model</span> <span class="o">=</span> <span class="n">GetCNN</span><span class="p">()</span>
<span class="lineno">141</span>
<span class="lineno">142</span> <span class="n">content</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="n">PATH</span><span class="p">)</span>
<span class="lineno">143</span> <span class="n">latest_time</span> <span class="o">=</span> <span class="mi">0</span>
<span class="lineno">144</span> <span class="k">for</span> <span class="n">item</span> <span class="ow">in</span> <span class="n">content</span><span class="p">:</span>
<span class="lineno">145</span> <span class="k">if</span> <span class="s1">&#39;CV_models&#39;</span> <span class="ow">in</span> <span class="n">item</span><span class="p">:</span>
<span class="lineno">146</span> <span class="n">foldername</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">PATH</span><span class="p">,</span> <span class="n">item</span><span class="p">)</span>
<span class="lineno">147</span> <span class="n">tm</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">getmtime</span><span class="p">(</span><span class="n">foldername</span><span class="p">)</span>
<span class="lineno">148</span> <span class="k">if</span> <span class="n">tm</span> <span class="o">&gt;</span> <span class="n">latest_time</span><span class="p">:</span>
<span class="lineno">149</span> <span class="n">latest_folder</span> <span class="o">=</span> <span class="n">foldername</span>
<span class="lineno">150</span>
<span class="lineno">151</span> <span class="n">file_type</span> <span class="o">=</span> <span class="s1">&#39;/*.pt&#39;</span>
<span class="lineno">152</span> <span class="n">files</span> <span class="o">=</span> <span class="n">glob</span><span class="p">(</span><span class="n">latest_folder</span> <span class="o">+</span> <span class="n">file_type</span><span class="p">)</span>
<span class="lineno">153</span>
<span class="lineno">154</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="mi">0</span>
<span class="lineno">155</span> <span class="k">for</span> <span class="n">model_file</span> <span class="ow">in</span> <span class="n">files</span><span class="p">:</span>
<span class="lineno">156</span> <span class="n">checkpoint</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">model_file</span><span class="p">)</span>
<span class="lineno">157</span> <span class="k">if</span> <span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;accuracy&#39;</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">accuracy</span><span class="p">:</span>
<span class="lineno">158</span> <span class="n">best_model</span><span class="o">.</span><span class="n">load_state_dict</span><span class="p">(</span><span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;state_dict&#39;</span><span class="p">])</span>
<span class="lineno">159</span> <span class="n">best_val_accuracy</span> <span class="o">=</span> <span class="n">checkpoint</span><span class="p">[</span><span class="s1">&#39;accuracy&#39;</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Test(best_model,)</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">162</span> <span class="k">return</span> <span class="n">best_model</span><span class="p">,</span> <span class="n">best_val_accuracy</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">164</span><span class="k">def</span> <span class="nf">val_step</span><span class="p">(</span><span class="n">net</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span> <span class="n">images</span><span class="p">,</span> <span class="n">labels</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>forward pass</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">166</span> <span class="n">output</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">images</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>loss in batch</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">168</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">cost</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>update validation loss</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">171</span> <span class="n">_</span><span class="p">,</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="lineno">172</span> <span class="n">acc</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">preds</span> <span class="o">==</span> <span class="n">labels</span><span class="p">)</span><span class="o">.</span><span class="n">item</span><span class="p">()</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">))</span>
<span class="lineno">173</span> <span class="n">acc_output</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;val_loss&#39;</span><span class="p">:</span> <span class="n">loss</span><span class="o">.</span><span class="n">detach</span><span class="p">(),</span> <span class="s1">&#39;val_acc&#39;</span><span class="p">:</span> <span class="n">acc</span><span class="p">}</span>
<span class="lineno">174</span> <span class="k">return</span> <span class="n">acc_output</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Test over testloader/valloader loop</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">177</span><span class="k">def</span> <span class="nf">Test</span><span class="p">(</span><span class="n">net</span><span class="p">,</span> <span class="n">cost</span><span class="p">,</span> <span class="n">testloader</span><span class="p">,</span> <span class="n">device</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Disable Dropout</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">179</span> <span class="n">net</span><span class="o">.</span><span class="n">eval</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Bookkeeping</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">182</span> <span class="n">correct</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="lineno">183</span> <span class="n">total</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="lineno">184</span> <span class="n">loss</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="lineno">185</span> <span class="n">train_steps</span> <span class="o">=</span> <span class="mf">0.0</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>Infer the model</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">188</span> <span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="lineno">189</span> <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">testloader</span><span class="p">:</span>
<span class="lineno">190</span> <span class="k">if</span> <span class="n">device</span><span class="p">:</span>
<span class="lineno">191</span> <span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">),</span> <span class="n">data</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="lineno">192</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">193</span> <span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="lineno">194</span>
<span class="lineno">195</span> <span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">images</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>loss in batch</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">197</span> <span class="n">loss</span> <span class="o">+=</span> <span class="n">cost</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
<span class="lineno">198</span> <span class="n">train_steps</span><span class="o">+=</span><span class="mi">1</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>losses[epoch] += loss.item()</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">201</span> <span class="n">_</span><span class="p">,</span> <span class="n">predicted</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">outputs</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="lineno">202</span> <span class="n">total</span> <span class="o">+=</span> <span class="n">labels</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="lineno">203</span> <span class="n">correct</span> <span class="o">+=</span> <span class="p">(</span><span class="n">predicted</span> <span class="o">==</span> <span class="n">labels</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="lineno">204</span> <span class="n">loss</span> <span class="o">=</span> <span class="n">loss</span><span class="o">/</span><span class="n">train_steps</span>
<span class="lineno">205</span>
<span class="lineno">206</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">correct</span> <span class="o">/</span> <span class="n">total</span>
<span class="lineno">207</span> <span class="n">loss_accuracy</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;val_loss&#39;</span><span class="p">:</span> <span class="n">loss</span><span class="p">,</span> <span class="s1">&#39;val_acc&#39;</span><span class="p">:</span> <span class="n">accuracy</span><span class="p">}</span> <span class="c1">#accuracy</span>
<span class="lineno">208</span> <span class="k">return</span> <span class="n">loss_accuracy</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>