mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-01 03:43:09 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			326 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | |
| <html>
 | |
| <head>
 | |
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | |
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | |
|     <meta name="description" content="A simple PyTorch implementation/tutorial of Generative Adversarial Networks (GAN) loss functions."/>
 | |
| 
 | |
|     <meta name="twitter:card" content="summary"/>
 | |
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta name="twitter:title" content="Generative Adversarial Networks (GAN)"/>
 | |
|     <meta name="twitter:description" content="A simple PyTorch implementation/tutorial of Generative Adversarial Networks (GAN) loss functions."/>
 | |
|     <meta name="twitter:site" content="@labmlai"/>
 | |
|     <meta name="twitter:creator" content="@labmlai"/>
 | |
| 
 | |
|     <meta property="og:url" content="https://nn.labml.ai/gan/index.html"/>
 | |
|     <meta property="og:title" content="Generative Adversarial Networks (GAN)"/>
 | |
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | |
|     <meta property="og:site_name" content="LabML Neural Networks"/>
 | |
|     <meta property="og:type" content="object"/>
 | |
|     <meta property="og:title" content="Generative Adversarial Networks (GAN)"/>
 | |
|     <meta property="og:description" content="A simple PyTorch implementation/tutorial of Generative Adversarial Networks (GAN) loss functions."/>
 | |
| 
 | |
|     <title>Generative Adversarial Networks (GAN)</title>
 | |
|     <link rel="shortcut icon" href="/icon.png"/>
 | |
|     <link rel="stylesheet" href="../pylit.css">
 | |
|     <link rel="canonical" href="https://nn.labml.ai/gan/index.html"/>
 | |
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | |
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | |
|     <script>
 | |
|         window.dataLayer = window.dataLayer || [];
 | |
| 
 | |
|         function gtag() {
 | |
|             dataLayer.push(arguments);
 | |
|         }
 | |
| 
 | |
|         gtag('js', new Date());
 | |
| 
 | |
|         gtag('config', 'G-4V3HC8HBLH');
 | |
|     </script>
 | |
| </head>
 | |
| <body>
 | |
| <div id='container'>
 | |
|     <div id="background"></div>
 | |
|     <div class='section'>
 | |
|         <div class='docs'>
 | |
|             <p>
 | |
|                 <a class="parent" href="/">home</a>
 | |
|                 <a class="parent" href="index.html">gan</a>
 | |
|             </p>
 | |
|             <p>
 | |
| 
 | |
|                 <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/gan/__init__.py">
 | |
|                     <img alt="Github"
 | |
|                          src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Join Slact"
 | |
|                          src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | |
|                          style="max-width:100%;"/></a>
 | |
|                 <a href="https://twitter.com/labmlai"
 | |
|                    rel="nofollow">
 | |
|                     <img alt="Twitter"
 | |
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | |
|                          style="max-width:100%;"/></a>
 | |
|             </p>
 | |
|         </div>
 | |
|     </div>
 | |
|     <div class='section' id='section-0'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-0'>#</a>
 | |
|                 </div>
 | |
|                 <h1>Generative Adversarial Networks (GAN)</h1>
 | |
| <p>This is an implementation of
 | |
| <a href="https://arxiv.org/abs/1406.2661">Generative Adversarial Networks</a>.</p>
 | |
| <p>The generator, $G(\pmb{z}; \theta_g)$ generates samples that match the
 | |
| distribution of data, while the discriminator, $D(\pmb{x}; \theta_g)$
 | |
| gives the probability that $\pmb{x}$ came from data rather than $G$.</p>
 | |
| <p>We train $D$ and $G$ simultaneously on a two-player min-max game with value
 | |
| function $V(G, D)$.</p>
 | |
| <p>
 | |
| <script type="math/tex; mode=display">\min_G \max_D V(D, G) =
 | |
|     \mathop{\mathbb{E}}_{\pmb{x} \sim p_{data}(\pmb{x})}
 | |
|         \big[\log D(\pmb{x})\big] +
 | |
|     \mathop{\mathbb{E}}_{\pmb{z} \sim p_{\pmb{z}}(\pmb{z})}
 | |
|         \big[\log (1 - D(G(\pmb{z}))\big]
 | |
| </script>
 | |
| </p>
 | |
| <p>$p_{data}(\pmb{x})$ is the probability distribution over data,
 | |
| whilst $p_{\pmb{z}}(\pmb{z})$ probability distribution of $\pmb{z}$, which is set to
 | |
| gaussian noise.</p>
 | |
| <p>This file defines the loss functions. <a href="simple_mnist_experiment.html">Here</a> is an MNIST example
 | |
| with two multilayer perceptron for the generator and discriminator.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">34</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
 | |
| <span class="lineno">35</span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
 | |
| <span class="lineno">36</span><span class="kn">import</span> <span class="nn">torch.utils.data</span>
 | |
| <span class="lineno">37</span><span class="kn">import</span> <span class="nn">torch.utils.data</span>
 | |
| <span class="lineno">38</span>
 | |
| <span class="lineno">39</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-1'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-1'>#</a>
 | |
|                 </div>
 | |
|                 <h2>Discriminator Loss</h2>
 | |
| <p>Discriminator should <strong>ascend</strong> on the gradient,</p>
 | |
| <p>
 | |
| <script type="math/tex; mode=display">\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \Bigg[
 | |
|     \log D\Big(\pmb{x}^{(i)}\Big) +
 | |
|     \log \Big(1 - D\Big(G\Big(\pmb{z}^{(i)}\Big)\Big)\Big)
 | |
| \Bigg]</script>
 | |
| </p>
 | |
| <p>$m$ is the mini-batch size and $(i)$ is used to index samples in the mini-batch.
 | |
| $\pmb{x}$ are samples from $p_{data}$ and $\pmb{z}$ are samples from $p_z$.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">42</span><span class="k">class</span> <span class="nc">DiscriminatorLogitsLoss</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-2'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-2'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">57</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">smoothing</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.2</span><span class="p">):</span>
 | |
| <span class="lineno">58</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-3'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-3'>#</a>
 | |
|                 </div>
 | |
|                 <p>We use PyTorch Binary Cross Entropy Loss, which is
 | |
| $-\sum\Big[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})\Big]$,
 | |
| where $y$ are the labels and $\hat{y}$ are the predictions.
 | |
| <em>Note the negative sign</em>.
 | |
| We use labels equal to $1$ for $\pmb{x}$ from $p_{data}$
 | |
| and labels equal to $0$ for $\pmb{x}$ from $p_{G}.$
 | |
| Then descending on the sum of these is same as ascending on
 | |
| the above gradient.</p>
 | |
| <p><code>BCEWithLogitsLoss</code> combines softmax and binary cross entropy loss.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">69</span>        <span class="bp">self</span><span class="o">.</span><span class="n">loss_true</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">()</span>
 | |
| <span class="lineno">70</span>        <span class="bp">self</span><span class="o">.</span><span class="n">loss_false</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">()</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-4'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-4'>#</a>
 | |
|                 </div>
 | |
|                 <p>We use label smoothing because it seems to work better in some cases</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">73</span>        <span class="bp">self</span><span class="o">.</span><span class="n">smoothing</span> <span class="o">=</span> <span class="n">smoothing</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-5'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-5'>#</a>
 | |
|                 </div>
 | |
|                 <p>Labels are registered as buffered and persistence is set to <code>False</code>.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">76</span>        <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'labels_true'</span><span class="p">,</span> <span class="n">_create_labels</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="n">smoothing</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span>
 | |
| <span class="lineno">77</span>        <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'labels_false'</span><span class="p">,</span> <span class="n">_create_labels</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="n">smoothing</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-6'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-6'>#</a>
 | |
|                 </div>
 | |
|                 <p><code>logits_true</code> are logits from $D(\pmb{x}^{(i)})$ and
 | |
| <code>logits_false</code> are logits from $D(G(\pmb{z}^{(i)}))$</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">79</span>    <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">logits_true</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">logits_false</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-7'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-7'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">84</span>        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">logits_true</span><span class="p">)</span> <span class="o">></span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">labels_true</span><span class="p">):</span>
 | |
| <span class="lineno">85</span>            <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s2">"labels_true"</span><span class="p">,</span>
 | |
| <span class="lineno">86</span>                                 <span class="n">_create_labels</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">logits_true</span><span class="p">),</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">smoothing</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">logits_true</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span>
 | |
| <span class="lineno">87</span>        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">logits_false</span><span class="p">)</span> <span class="o">></span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">labels_false</span><span class="p">):</span>
 | |
| <span class="lineno">88</span>            <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s2">"labels_false"</span><span class="p">,</span>
 | |
| <span class="lineno">89</span>                                 <span class="n">_create_labels</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">logits_false</span><span class="p">),</span> <span class="mf">0.0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">smoothing</span><span class="p">,</span> <span class="n">logits_false</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span>
 | |
| <span class="lineno">90</span>
 | |
| <span class="lineno">91</span>        <span class="k">return</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">loss_true</span><span class="p">(</span><span class="n">logits_true</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">labels_true</span><span class="p">[:</span><span class="nb">len</span><span class="p">(</span><span class="n">logits_true</span><span class="p">)]),</span>
 | |
| <span class="lineno">92</span>                <span class="bp">self</span><span class="o">.</span><span class="n">loss_false</span><span class="p">(</span><span class="n">logits_false</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">labels_false</span><span class="p">[:</span><span class="nb">len</span><span class="p">(</span><span class="n">logits_false</span><span class="p">)]))</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-8'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-8'>#</a>
 | |
|                 </div>
 | |
|                 <h2>Generator Loss</h2>
 | |
| <p>Generator should <strong>descend</strong> on the gradient,</p>
 | |
| <p>
 | |
| <script type="math/tex; mode=display">\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \Bigg[
 | |
|     \log \Big(1 - D\Big(G\Big(\pmb{z}^{(i)}\Big)\Big)\Big)
 | |
| \Bigg]</script>
 | |
| </p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">95</span><span class="k">class</span> <span class="nc">GeneratorLogitsLoss</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-9'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-9'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">105</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">smoothing</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.2</span><span class="p">):</span>
 | |
| <span class="lineno">106</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
 | |
| <span class="lineno">107</span>        <span class="bp">self</span><span class="o">.</span><span class="n">loss_true</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">()</span>
 | |
| <span class="lineno">108</span>        <span class="bp">self</span><span class="o">.</span><span class="n">smoothing</span> <span class="o">=</span> <span class="n">smoothing</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-10'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-10'>#</a>
 | |
|                 </div>
 | |
|                 <p>We use labels equal to $1$ for $\pmb{x}$ from $p_{G}.$
 | |
| Then descending on this loss is same as descending on
 | |
| the above gradient.</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">112</span>        <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'fake_labels'</span><span class="p">,</span> <span class="n">_create_labels</span><span class="p">(</span><span class="mi">256</span><span class="p">,</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="n">smoothing</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-11'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-11'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">114</span>    <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">logits</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
 | |
| <span class="lineno">115</span>        <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">logits</span><span class="p">)</span> <span class="o">></span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fake_labels</span><span class="p">):</span>
 | |
| <span class="lineno">116</span>            <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s2">"fake_labels"</span><span class="p">,</span>
 | |
| <span class="lineno">117</span>                                 <span class="n">_create_labels</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">logits</span><span class="p">),</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">smoothing</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="n">logits</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="kc">False</span><span class="p">)</span>
 | |
| <span class="lineno">118</span>
 | |
| <span class="lineno">119</span>        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_true</span><span class="p">(</span><span class="n">logits</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">fake_labels</span><span class="p">[:</span><span class="nb">len</span><span class="p">(</span><span class="n">logits</span><span class="p">)])</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-12'>
 | |
|         <div class='docs doc-strings'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-12'>#</a>
 | |
|                 </div>
 | |
|                 <p>Create smoothed labels</p>
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">122</span><span class="k">def</span> <span class="nf">_create_labels</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">r1</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">r2</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">device</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     <div class='section' id='section-13'>
 | |
|             <div class='docs'>
 | |
|                 <div class='section-link'>
 | |
|                     <a href='#section-13'>#</a>
 | |
|                 </div>
 | |
|                 
 | |
|             </div>
 | |
|             <div class='code'>
 | |
|                 <div class="highlight"><pre><span class="lineno">126</span>    <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span><span class="o">.</span><span class="n">uniform_</span><span class="p">(</span><span class="n">r1</span><span class="p">,</span> <span class="n">r2</span><span class="p">)</span></pre></div>
 | |
|             </div>
 | |
|         </div>
 | |
|     </div>
 | |
| </div>
 | |
| <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | |
| </script>
 | |
| <!-- MathJax configuration -->
 | |
| <script type="text/x-mathjax-config">
 | |
|     MathJax.Hub.Config({
 | |
|         tex2jax: {
 | |
|             inlineMath: [ ['$','$'] ],
 | |
|             displayMath: [ ['$$','$$'] ],
 | |
|             processEscapes: true,
 | |
|             processEnvironments: true
 | |
|         },
 | |
|         // Center justify equations in code and markdown cells. Elsewhere
 | |
|         // we use CSS to left justify single line equations in code cells.
 | |
|         displayAlign: 'center',
 | |
|         "HTML-CSS": { fonts: ["TeX"] }
 | |
|     });
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| </script>
 | |
| </body>
 | |
| </html> | 
