Files
Varuna Jayasiri f28b2f4a35 📚 instance norm
2021-04-23 15:20:21 +05:30

497 lines
45 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="cnn.py"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/cnn/models/cnn.html"/>
<meta property="og:title" content="cnn.py"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="cnn.py"/>
<meta property="og:description" content=""/>
<title>cnn.py</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/cnn/models/cnn.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">cnn</a>
<a class="parent" href="index.html">models</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/cnn/models/cnn.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
rel="nofollow">
<img alt="Join Slact"
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">3</span><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="lineno">4</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">5</span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="lineno">6</span>
<span class="lineno">7</span><span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s2">&quot;cuda:0&quot;</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s2">&quot;cpu&quot;</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<p>Use the formula:
[(W-K+2P)/S] + 1
where:
W: Is the input volume size for each dimension
K: Is the kernel size
P: Is the padding
S: Is the stride</p>
</div>
<div class='code'>
<div class="highlight"><pre></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">18</span><span class="k">def</span> <span class="nf">CalcConvFormula</span><span class="p">(</span><span class="n">W</span><span class="p">,</span> <span class="n">K</span><span class="p">,</span> <span class="n">P</span><span class="p">,</span> <span class="n">S</span><span class="p">):</span>
<span class="lineno">19</span> <span class="k">return</span> <span class="nb">int</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">floor</span><span class="p">(((</span><span class="n">W</span> <span class="o">-</span> <span class="n">K</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">P</span><span class="p">)</span> <span class="o">/</span> <span class="n">S</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>https://stackoverflow.com/questions/53580088/calculate-the-output-size-in-convolution-layer
Calculate the output shape after applying a convolution</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">24</span><span class="k">def</span> <span class="nf">CalcConvOutShape</span><span class="p">(</span><span class="n">in_shape</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">padding</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">out_filters</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Multiple options for different kernel shapes</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">26</span> <span class="k">if</span> <span class="nb">type</span><span class="p">(</span><span class="n">kernel_size</span><span class="p">)</span> <span class="o">==</span> <span class="nb">int</span><span class="p">:</span>
<span class="lineno">27</span> <span class="n">out_shape</span> <span class="o">=</span> <span class="p">[</span><span class="n">CalcConvFormula</span><span class="p">(</span><span class="n">in_shape</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">padding</span><span class="p">,</span> <span class="n">stride</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">)]</span>
<span class="lineno">28</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">29</span> <span class="n">out_shape</span> <span class="o">=</span> <span class="p">[</span><span class="n">CalcConvFormula</span><span class="p">(</span><span class="n">in_shape</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">kernel_size</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">padding</span><span class="p">,</span> <span class="n">stride</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">)]</span>
<span class="lineno">30</span>
<span class="lineno">31</span> <span class="k">return</span> <span class="p">(</span><span class="n">out_shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">out_shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">out_filters</span><span class="p">)</span> <span class="c1"># , batch_size... but not necessary.</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">33</span><span class="k">class</span> <span class="nc">CNN</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">34</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span>
<span class="lineno">35</span> <span class="p">,</span> <span class="n">in_features</span>
<span class="lineno">36</span> <span class="p">,</span> <span class="n">out_features</span>
<span class="lineno">37</span> <span class="p">,</span> <span class="n">conv_filters</span>
<span class="lineno">38</span> <span class="p">,</span> <span class="n">conv_kernel_size</span>
<span class="lineno">39</span> <span class="p">,</span> <span class="n">conv_strides</span>
<span class="lineno">40</span> <span class="p">,</span> <span class="n">conv_pad</span>
<span class="lineno">41</span> <span class="p">,</span> <span class="n">actv_func</span>
<span class="lineno">42</span> <span class="p">,</span> <span class="n">max_pool_kernels</span>
<span class="lineno">43</span> <span class="p">,</span> <span class="n">max_pool_strides</span>
<span class="lineno">44</span> <span class="p">,</span> <span class="n">l1</span><span class="o">=</span><span class="mi">120</span>
<span class="lineno">45</span> <span class="p">,</span> <span class="n">l2</span><span class="o">=</span><span class="mi">84</span>
<span class="lineno">46</span> <span class="p">,</span> <span class="n">MLP</span><span class="o">=</span><span class="kc">None</span>
<span class="lineno">47</span> <span class="p">,</span> <span class="n">pre_module_list</span><span class="o">=</span><span class="kc">None</span>
<span class="lineno">48</span> <span class="p">,</span> <span class="n">use_dropout</span><span class="o">=</span><span class="kc">False</span>
<span class="lineno">49</span> <span class="p">,</span> <span class="n">use_batch_norm</span><span class="o">=</span><span class="kc">False</span>
<span class="lineno">50</span> <span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s2">&quot;cpu&quot;</span>
<span class="lineno">51</span> <span class="p">):</span>
<span class="lineno">52</span> <span class="nb">super</span><span class="p">(</span><span class="n">CNN</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Gerneral model Properties</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">55</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_features</span> <span class="o">=</span> <span class="n">in_features</span>
<span class="lineno">56</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_features</span> <span class="o">=</span> <span class="n">out_features</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Convolution operations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">59</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_filters</span> <span class="o">=</span> <span class="n">conv_filters</span>
<span class="lineno">60</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_kernel_size</span> <span class="o">=</span> <span class="n">conv_kernel_size</span>
<span class="lineno">61</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_strides</span> <span class="o">=</span> <span class="n">conv_strides</span>
<span class="lineno">62</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_pad</span> <span class="o">=</span> <span class="n">conv_pad</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Convolution Activiations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">65</span> <span class="bp">self</span><span class="o">.</span><span class="n">actv_func</span> <span class="o">=</span> <span class="n">actv_func</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Max Pools</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">68</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool_kernels</span> <span class="o">=</span> <span class="n">max_pool_kernels</span>
<span class="lineno">69</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool_strides</span> <span class="o">=</span> <span class="n">max_pool_strides</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Regularization</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">72</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_dropout</span> <span class="o">=</span> <span class="n">use_dropout</span>
<span class="lineno">73</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_batch_norm</span> <span class="o">=</span> <span class="n">use_batch_norm</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Tunable parameters</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">76</span> <span class="bp">self</span><span class="o">.</span><span class="n">l1</span> <span class="o">=</span> <span class="n">l1</span>
<span class="lineno">77</span> <span class="bp">self</span><span class="o">.</span><span class="n">l2</span> <span class="o">=</span> <span class="n">l2</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>Number of conv/pool/act/batch_norm/dropout layers we add</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">80</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_conv_layers</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_filters</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Create the module list</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">83</span> <span class="k">if</span> <span class="n">pre_module_list</span><span class="p">:</span>
<span class="lineno">84</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span> <span class="o">=</span> <span class="n">pre_module_list</span>
<span class="lineno">85</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">86</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">()</span>
<span class="lineno">87</span>
<span class="lineno">88</span> <span class="bp">self</span><span class="o">.</span><span class="n">shape_list</span> <span class="o">=</span> <span class="p">[]</span>
<span class="lineno">89</span> <span class="bp">self</span><span class="o">.</span><span class="n">shape_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">in_features</span><span class="p">)</span>
<span class="lineno">90</span>
<span class="lineno">91</span> <span class="bp">self</span><span class="o">.</span><span class="n">build_</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Send to gpu</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">94</span> <span class="bp">self</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">device</span>
<span class="lineno">95</span> <span class="bp">self</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">97</span> <span class="k">def</span> <span class="nf">build_</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Track shape</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">99</span> <span class="n">cur_shape</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">GetCurShape</span><span class="p">()</span>
<span class="lineno">100</span>
<span class="lineno">101</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_conv_layers</span><span class="p">):</span>
<span class="lineno">102</span> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="lineno">103</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">in_features</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="lineno">104</span> <span class="n">in_channels</span> <span class="o">=</span> <span class="mi">1</span>
<span class="lineno">105</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">106</span> <span class="n">in_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_features</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="lineno">107</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">108</span> <span class="n">in_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_filters</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
<span class="lineno">109</span>
<span class="lineno">110</span> <span class="n">cur_shape</span> <span class="o">=</span> <span class="n">CalcConvOutShape</span><span class="p">(</span><span class="n">cur_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_kernel_size</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_pad</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_strides</span><span class="p">[</span><span class="n">i</span><span class="p">],</span>
<span class="lineno">111</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_filters</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="lineno">112</span> <span class="bp">self</span><span class="o">.</span><span class="n">shape_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">cur_shape</span><span class="p">)</span>
<span class="lineno">113</span>
<span class="lineno">114</span> <span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="n">in_channels</span><span class="p">,</span>
<span class="lineno">115</span> <span class="n">out_channels</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_filters</span><span class="p">[</span><span class="n">i</span><span class="p">],</span>
<span class="lineno">116</span> <span class="n">kernel_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_kernel_size</span><span class="p">[</span><span class="n">i</span><span class="p">],</span>
<span class="lineno">117</span> <span class="n">padding</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_pad</span><span class="p">[</span><span class="n">i</span><span class="p">],</span>
<span class="lineno">118</span> <span class="n">stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_strides</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="lineno">119</span> <span class="p">)</span>
<span class="lineno">120</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">conv</span><span class="p">)</span>
<span class="lineno">121</span>
<span class="lineno">122</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_batch_norm</span><span class="p">:</span>
<span class="lineno">123</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">cur_shape</span><span class="p">[</span><span class="mi">2</span><span class="p">]))</span>
<span class="lineno">124</span>
<span class="lineno">125</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_dropout</span><span class="p">:</span>
<span class="lineno">126</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="mf">0.15</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Add the Activation function</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">129</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">actv_func</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
<span class="lineno">130</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">GetActivation</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">actv_func</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
<span class="lineno">131</span>
<span class="lineno">132</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool_kernels</span><span class="p">:</span>
<span class="lineno">133</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool_kernels</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span>
<span class="lineno">134</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_pool_kernels</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_pool_strides</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span>
<span class="lineno">135</span> <span class="n">cur_shape</span> <span class="o">=</span> <span class="n">CalcConvOutShape</span><span class="p">(</span><span class="n">cur_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool_kernels</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool_strides</span><span class="p">[</span><span class="n">i</span><span class="p">],</span>
<span class="lineno">136</span> <span class="n">cur_shape</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
<span class="lineno">137</span> <span class="bp">self</span><span class="o">.</span><span class="n">shape_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">cur_shape</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<h1>Adding MLP</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">140</span> <span class="n">s</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">GetCurShape</span><span class="p">()</span>
<span class="lineno">141</span> <span class="n">in_features</span> <span class="o">=</span> <span class="n">s</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">s</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">s</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="lineno">142</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_features</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">l1</span><span class="p">))</span>
<span class="lineno">143</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">())</span>
<span class="lineno">144</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">l1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">l2</span><span class="p">))</span>
<span class="lineno">145</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">())</span>
<span class="lineno">146</span> <span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">l2</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_features</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">148</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="lineno">149</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span>
<span class="lineno">150</span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">module</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">module_list</span><span class="p">):</span>
<span class="lineno">151</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">module</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">)</span> <span class="ow">and</span> <span class="n">j</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="lineno">152</span> <span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">float</span><span class="p">(),</span> <span class="n">start_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="lineno">153</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">1</span>
<span class="lineno">154</span> <span class="n">x</span> <span class="o">=</span> <span class="n">module</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">155</span> <span class="k">return</span> <span class="n">x</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">157</span> <span class="k">def</span> <span class="nf">GetCurShape</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">158</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">shape_list</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">160</span><span class="k">def</span> <span class="nf">GetCNN</span><span class="p">(</span><span class="n">l1</span><span class="o">=</span><span class="mi">120</span><span class="p">,</span> <span class="n">l2</span><span class="o">=</span><span class="mi">84</span><span class="p">):</span>
<span class="lineno">161</span> <span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s2">&quot;cuda:0&quot;</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s2">&quot;cpu&quot;</span><span class="p">)</span>
<span class="lineno">162</span> <span class="n">cnn</span> <span class="o">=</span> <span class="n">CNN</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="lineno">163</span> <span class="n">out_features</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="lineno">164</span> <span class="n">conv_filters</span><span class="o">=</span><span class="p">[</span><span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">],</span> <span class="c1"># , 128, 256, 512</span>
<span class="lineno">165</span> <span class="n">conv_kernel_size</span><span class="o">=</span><span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="c1"># ,3,3,1</span>
<span class="lineno">166</span> <span class="n">conv_strides</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="c1"># ,1,1,1</span>
<span class="lineno">167</span> <span class="n">conv_pad</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="lineno">168</span> <span class="n">actv_func</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;relu&quot;</span><span class="p">,</span> <span class="s2">&quot;relu&quot;</span><span class="p">,</span> <span class="s2">&quot;relu&quot;</span><span class="p">,</span> <span class="s2">&quot;relu&quot;</span><span class="p">],</span> <span class="c1"># , &quot;relu&quot;, &quot;relu&quot;, &quot;relu&quot;</span>
<span class="lineno">169</span> <span class="n">max_pool_kernels</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="kc">None</span><span class="p">,</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)],</span> <span class="c1"># , None, None, None</span>
<span class="lineno">170</span> <span class="n">max_pool_strides</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="c1"># , None,None, None</span>
<span class="lineno">171</span> <span class="n">l1</span><span class="o">=</span><span class="n">l1</span><span class="p">,</span>
<span class="lineno">172</span> <span class="n">l2</span><span class="o">=</span><span class="n">l2</span><span class="p">,</span>
<span class="lineno">173</span> <span class="n">use_dropout</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="lineno">174</span> <span class="n">use_batch_norm</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="c1"># False</span>
<span class="lineno">175</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span>
<span class="lineno">176</span> <span class="p">)</span>
<span class="lineno">177</span>
<span class="lineno">178</span> <span class="k">return</span> <span class="n">cnn</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">181</span><span class="k">def</span> <span class="nf">GetActivation</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">):</span>
<span class="lineno">182</span> <span class="k">if</span> <span class="n">name</span> <span class="o">==</span> <span class="s2">&quot;relu&quot;</span><span class="p">:</span>
<span class="lineno">183</span> <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()</span>
<span class="lineno">184</span> <span class="k">elif</span> <span class="n">name</span> <span class="o">==</span> <span class="s2">&quot;leakyrelu&quot;</span><span class="p">:</span>
<span class="lineno">185</span> <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">LeakyReLU</span><span class="p">()</span>
<span class="lineno">186</span> <span class="k">elif</span> <span class="n">name</span> <span class="o">==</span> <span class="s2">&quot;Sigmoid&quot;</span><span class="p">:</span>
<span class="lineno">187</span> <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sigmoid</span><span class="p">()</span>
<span class="lineno">188</span> <span class="k">elif</span> <span class="n">name</span> <span class="o">==</span> <span class="s2">&quot;Tanh&quot;</span><span class="p">:</span>
<span class="lineno">189</span> <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Tanh</span><span class="p">()</span>
<span class="lineno">190</span> <span class="k">elif</span> <span class="n">name</span> <span class="o">==</span> <span class="s2">&quot;Identity&quot;</span><span class="p">:</span>
<span class="lineno">191</span> <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Identity</span><span class="p">()</span>
<span class="lineno">192</span> <span class="k">else</span><span class="p">:</span>
<span class="lineno">193</span> <span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
</body>
</html>