Files
Varuna Jayasiri d0044a88c2 experiment links
2021-08-08 08:35:05 +05:30

204 lines
11 KiB
Plaintext

{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "HyperLSTM",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "AYV_dMVDxyc2"
},
"source": [
"[![Github](https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social)](https://github.com/labmlai/annotated_deep_learning_paper_implementations)\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/hypernetworks/experiment.ipynb) \n",
"\n",
"## HyperLSTM\n",
"\n",
"This is an experiment training Shakespear dataset with HyperLSTM from paper HyperNetworks."
]
},
{
"cell_type": "code",
"metadata": {
"id": "ZCzmCrAIVg0L"
},
"source": [
"!pip install labml-nn"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "0hJXx_g0wS2C"
},
"source": [
"from labml import experiment\n",
"from labml_nn.hypernetworks.experiment import Configs"
],
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 255
},
"id": "WQ8VGpMGwZuj",
"outputId": "5833cc50-26a8-496e-e729-88f42b3f4651"
},
"source": [
"# Create experiment\n",
"experiment.create(name=\"hyper_lstm\", comment='')\n",
"# Create configs\n",
"conf = Configs()\n",
"# Load configurations\n",
"experiment.configs(conf,\n",
" # A dictionary of configurations to override\n",
" {'tokenizer': 'character',\n",
" 'text': 'tiny_shakespeare',\n",
" 'optimizer.learning_rate': 2.5e-4,\n",
" 'optimizer.optimizer': 'Adam',\n",
" 'prompt': 'It is',\n",
" 'prompt_separator': '',\n",
"\n",
" 'rnn_model': 'hyper_lstm',\n",
"\n",
" 'train_loader': 'shuffled_train_loader',\n",
" 'valid_loader': 'shuffled_valid_loader',\n",
"\n",
" 'seq_len': 512,\n",
" 'epochs': 128,\n",
" 'batch_size': 2,\n",
" 'inner_iterations': 25})\n",
"\n",
"\n",
"# Set models for saving and loading\n",
"experiment.add_pytorch_models({'model': conf.model})\n",
"\n",
"conf.init()"
],
"execution_count": 5,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<pre style=\"overflow-x: scroll;\">\n",
"Prepare model...\n",
" Prepare n_tokens...\n",
" Prepare text...\n",
" Prepare tokenizer<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t3.07ms</span>\n",
" Load data<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t2.85ms</span>\n",
" Tokenize<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t33.69ms</span>\n",
" Build vocabulary<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t103.52ms</span>\n",
" Prepare text<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t153.38ms</span>\n",
" Prepare n_tokens<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t160.21ms</span>\n",
" Prepare rnn_model<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t13.84ms</span>\n",
"Prepare model<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t195.08ms</span>\n",
"Prepare mode<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t1.78ms</span>\n",
"</pre>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {
"tags": []
}
},
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.6/dist-packages/torch/nn/modules/container.py:434: UserWarning: Setting attributes on ParameterList is not supported.\n",
" warnings.warn(\"Setting attributes on ParameterList is not supported.\")\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 425
},
"id": "f07vAOaHwumr",
"outputId": "6b51205e-3852-4dce-f7a7-f3ba4066ba21"
},
"source": [
"# Start the experiment\n",
"with experiment.start():\n",
" # `TrainValidConfigs.run`\n",
" conf.run()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<pre style=\"overflow-x: scroll;\">\n",
"<strong><span style=\"text-decoration: underline\">hyper_lstm</span></strong>: <span style=\"color: #208FFB\">5004f5724d8611eba84a0242ac1c0002</span>\n",
"\t[dirty]: <strong><span style=\"color: #DDB62B\">\"\"</span></strong>\n",
"Initialize<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t1.12ms</span>\n",
"Prepare validator...\n",
" Prepare valid_loader<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t76.72ms</span>\n",
"<span style=\"color: #C5C1B4\"></span>\n",
"<span style=\"color: #C5C1B4\">--------------------------------------------------</span><span style=\"color: #DDB62B\"><strong><span style=\"text-decoration: underline\"></span></strong></span>\n",
"<span style=\"color: #DDB62B\"><strong><span style=\"text-decoration: underline\">LABML WARNING</span></strong></span>\n",
"<span style=\"color: #DDB62B\"><strong><span style=\"text-decoration: underline\"></span></strong></span>LabML App Warning: <span style=\"color: #60C6C8\">empty_token: </span><strong>Please create a valid token at https://app.labml.ai.</strong>\n",
"<strong>Click on the experiment link to monitor the experiment and add it to your experiments list.</strong><span style=\"color: #C5C1B4\"></span>\n",
"<span style=\"color: #C5C1B4\">--------------------------------------------------</span>\n",
"<span style=\"color: #208FFB\">Monitor experiment at </span><a href='https://app.labml.ai/run?uuid=5004f5724d8611eba84a0242ac1c0002' target='blank'>https://app.labml.ai/run?uuid=5004f5724d8611eba84a0242ac1c0002</a>\n",
"Prepare validator<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t174.93ms</span>\n",
"Prepare trainer...\n",
" Prepare train_loader<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t100.16ms</span>\n",
"Prepare trainer<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t137.49ms</span>\n",
"Prepare training_loop...\n",
" Prepare loop_count<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t37.12ms</span>\n",
"Prepare training_loop<span style=\"color: #00A250\">...[DONE]</span><span style=\"color: #208FFB\">\t301.04ms</span>\n",
"<span style=\"color: #C5C1B4\">It is</span><strong>?</strong><strong>?</strong><strong>?</strong><strong>?</strong><strong>?</strong><strong>?</strong><strong>?</strong><strong>?</strong><strong>n</strong><strong>n</strong><strong>?</strong><strong>n</strong><strong>?</strong><strong>n</strong><strong>?</strong><strong>n</strong><strong>?</strong><strong>?</strong><strong>?</strong><strong>n</strong><strong>n</strong><strong>?</strong><strong>n</strong><strong>?</strong><strong>n</strong>\n",
"<span style=\"color: #C5C1B4\">It is</span><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>a</strong><strong>n</strong><strong>d</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>a</strong><strong>n</strong><strong>d</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>a</strong><strong>n</strong><strong>d</strong><strong> </strong>\n",
"<span style=\"color: #C5C1B4\">It is</span><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong>\n",
"<span style=\"color: #C5C1B4\">It is</span><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong><strong>t</strong><strong>h</strong><strong>e</strong><strong> </strong>\n",
"<strong><span style=\"color: #DDB62B\"> 65,536: </span></strong>Sample:<span style=\"color: #C5C1B4\"> 100%</span><span style=\"color: #208FFB\"> 1,288ms </span>Train:<span style=\"color: #C5C1B4\"> 13%</span><span style=\"color: #208FFB\"> 4,212,862ms </span>Valid:<span style=\"color: #C5C1B4\"> 11%</span><span style=\"color: #208FFB\"> 132,056ms </span> accuracy.train: <strong>0.301926</strong> loss.train: <strong> 2.25940</strong> accuracy.valid: <span style=\"color: #C5C1B4\">0.330679</span> loss.valid: <span style=\"color: #C5C1B4\"> 2.48882</span> <span style=\"color: #208FFB\">4,346,206ms</span><span style=\"color: #D160C4\"> 0:08m/154:23m </span></pre>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "crH6MzKmw-SY"
},
"source": [
""
],
"execution_count": null,
"outputs": []
}
]
}