Files
Varuna Jayasiri 7f74eeba77 \textcolor
2021-10-21 17:32:54 +05:30

160 lines
6.7 KiB
Python

"""
---
title: AdaBelief optimizer
summary: A simple PyTorch implementation/tutorial of AdaBelief optimizer.
---
# AdaBelief Optimizer
This is based from AdaBelief
[official implementation](https://github.com/juntang-zhuang/Adabelief-Optimizer)
of the paper
[AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients](https://papers.labml.ai/paper/2010.07468).
This is implemented in [PyTorch](https://pytorch.org) as an extension to [RAdam](radam.html).
The main difference between Adam optimizer and AdaBelief is that,
how it calculates the adaptive learning rate;
instead of dividing by the exponential moving average of square of the gradients,
AdaBelief divides by the exponential mean of variance.
\begin{align}
m_t &\leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t \\
\textcolor{cyan}{s_t} &\textcolor{cyan}{\leftarrow} \textcolor{cyan}{\beta_2 s_{t-1} + (1 - \beta_2) \cdot (g_t - m_t)^2} \\
\hat{m}_t &\leftarrow \frac{m_t}{1-\beta_1^t} \\
\textcolor{cyan}{\hat{s}_t} &\textcolor{cyan}{\leftarrow} \frac{\textcolor{cyan}{s_t} + \textcolor{red}{\epsilon}}{\textcolor{cyan}{1-\beta_2^t}} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\textcolor{cyan}{\hat{s}_t}} + \epsilon}
\end{align}
🤔 The paper calculates variance as $(g_t - m_t)^2$,
but I feel it should use the bias corrected momentum
$(g_t - \textcolor{orange}{\hat{m}_t})^2$.
I guess this doesn't affect things much because
bias correction is $\approx 1$ after the initial training steps.
"""
from typing import Dict, Any
import torch
from torch import nn
from labml_nn.optimizers import WeightDecay
from labml_nn.optimizers.radam import RAdam
class AdaBelief(RAdam):
"""
## AdaBelief Optimizer
This class extends from RAdam optimizer defined in [`radam.py`](radam.html).
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
degenerate_to_sgd=True,
rectify=True, defaults=None):
"""
### Initialize the optimizer
* `params` is the list of parameters
* `lr` is the learning rate $\alpha$
* `betas` is a tuple of ($\beta_1$, $\beta_2$)
* `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
* `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
* `optimized_update` is a flag whether to optimize the bias correction of the second moment
by doing it after adding $\epsilon$
* `amsgrad` is a flag indicating whether to use AMSGrad or fallback to plain Adam
* `degenerate_to_sgd` whether to use sgd when the rectification term $r_t$ is intractable
* `rectify` is whether to use RAdam update
* `defaults` is a dictionary of default for group values.
This is useful when you want to extend the class `AdaBelief`.
"""
defaults = {} if defaults is None else defaults
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, degenerate_to_sgd, defaults)
self.rectify = rectify
def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
"""
### Initialize a parameter state
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `param` is the parameter tensor $\theta_{t-1}$
"""
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
# Exponential moving average of variance
state['exp_avg_var'] = torch.zeros_like(param, memory_format=torch.preserve_format)
# If `amsgrad` flag is `True` for this parameter group, we maintain the maximum of
# exponential moving average of variance
if group['amsgrad']:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_var'] = torch.zeros_like(param, memory_format=torch.preserve_format)
def get_ms(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
"""
### Calculate $m_t$ and $s_t$ or $\max(s_1, s_2, ..., s_{t-1}, s_t)$
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
"""
# Get $\beta_1$ and $\beta_2$
beta1, beta2 = group['betas']
# Get $m_{t-1}$ and $s_{t-1}$
m, s = state['exp_avg'], state['exp_avg_var']
# In-place calculation of $m_t$
# $$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t$$
m.mul_(beta1).add_(grad, alpha=1 - beta1)
# Difference between gradient and momentum
grad_residual = grad - m
# In-place calculation of $s_t$
# $$s_t \leftarrow \beta_2 s_{t-1} + (1 - \beta_2) \cdot (g_t - m_t)^2$$
s.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2)
# If this parameter group is using `amsgrad`
if group['amsgrad']:
# Get $\max(s_1, s_2, ..., s_{t-1})$.
s_max = state['max_exp_avg_var']
# Calculate $\max(s_1, s_2, ..., s_{t-1}, s_t)$.
torch.maximum(s_max, s, out=s_max)
return m, s_max
else:
# $m_t$ and $s_t$ otherwise
return m, s
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
"""
### Take an update step for a given parameter tensor
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
* `param` is the parameter tensor $\theta_{t-1}$
"""
# Calculate weight decay
grad = self.weight_decay(param, grad, group)
# Get $m_t$ and $v_t$
m, s = self.get_ms(state, group, grad)
# Increment $t$ the number of optimizer steps
state['step'] += 1
if not self.rectify:
# Perform *Adam* update, defined in [`adam.py`](adam.html), with
# $\textcolor{cyan}{s_t} + \textcolor{red}{\epsilon}$ in place of $v_t$.
self.adam_update(state, group, param, m, s + group['eps'])
else:
# Perform *Rectified Adam* update defined in [`radam.py`](radam.html), with
# $\textcolor{cyan}{s_t} + \textcolor{red}{\epsilon}$ in place of $v_t$.
self.r_adam_update(state, group, param, m, s + group['eps'])