Files
2022-08-08 11:12:32 +05:30

83 lines
2.7 KiB
Python

from typing import Tuple
import torch
from labml import experiment, monit
from labml import logger
from labml.logger import Text
from labml_helpers.datasets.text import TextDataset
from labml_nn.sampling import Sampler
from labml_nn.sampling.greedy import GreedySampler
from labml_nn.sampling.nucleus import NucleusSampler
from labml_nn.sampling.temperature import TemperatureSampler
from labml_nn.sampling.top_k import TopKSampler
from labml_nn.transformers.basic.autoregressive_experiment import Configs, AutoregressiveTransformer
def get_model_dataset(run_uuid: str) -> Tuple[AutoregressiveTransformer, TextDataset]:
experiment.evaluate()
conf = Configs()
experiment.configs(conf, experiment.load_configs(run_uuid))
experiment.load(run_uuid)
experiment.add_pytorch_models({'model': conf.model})
experiment.start()
return conf.model, conf.text
def sample(model, ds, sampler: Sampler, n_samples: int, n_tokens: int, seq_len: int, prompt: str):
with torch.no_grad():
data = torch.tile(ds.text_to_i(prompt)[:, None], (1, n_samples))
# Collect output for printing
logs = [[(prompt, Text.meta)] for _ in range(n_samples)]
# Sample 25 tokens
for i in monit.iterate('Sample', n_tokens):
# Tokenize the prompt
data = data[-seq_len:]
# Get the model output
logits, *_ = model(data)
logits = logits[-1]
# Get the model prediction (greedy)
res = sampler(logits)
data = torch.cat([data, res[None, :]], dim=0)
# Add the prediction for logging
for j in range(n_samples):
logs[j] += [('' + ds.itos[res[j]], Text.value)]
# Print the sampled output
for j in range(n_samples):
logger.log(logs[j])
def main():
model, ds = get_model_dataset('074d4004cc6b11ecad7a0242ac1c0002')
model.eval()
with monit.section('greedy'):
sample(model, ds, GreedySampler(), 4, 32, 128, 'It is')
with monit.section('temperature=1.'):
sample(model, ds, TemperatureSampler(1.), 4, 32, 128, 'It is')
with monit.section('temperature=.1'):
sample(model, ds, TemperatureSampler(.1), 4, 32, 128, 'It is')
with monit.section('temperature=10.'):
sample(model, ds, TemperatureSampler(10.), 4, 32, 128, 'It is')
with monit.section('top_k=5'):
sample(model, ds, TopKSampler(2, TemperatureSampler(1.)), 4, 32, 128, 'It is')
with monit.section('nucles p=.95'):
sample(model, ds, NucleusSampler(0.95, TemperatureSampler(1.)), 4, 32, 128, 'It is')
with monit.section('nucles p=.95'):
sample(model, ds, NucleusSampler(0.1, TemperatureSampler(1.)), 4, 32, 128, 'It is')
if __name__ == '__main__':
main()