Files
Varuna Jayasiri ccb9ee2e4c typos in readmes
2021-02-19 09:23:27 +05:30
..
2021-02-07 15:46:50 +05:30
2021-02-19 09:23:27 +05:30
2021-02-07 15:46:50 +05:30

<!DOCTYPE html>
<html>
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>

    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta name="twitter:title" content="Transformer XL"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>

    <meta property="og:url" content="https://nn.labml.ai/transformers/xl/readme.html"/>
    <meta property="og:title" content="Transformer XL"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta property="og:site_name" content="LabML Neural Networks"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="Transformer XL"/>
    <meta property="og:description" content=""/>

    <title>Transformer XL</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../../pylit.css">
    <link rel="canonical" href="https://nn.labml.ai/transformers/xl/readme.html"/>
    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];

        function gtag() {
            dataLayer.push(arguments);
        }

        gtag('js', new Date());

        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="../index.html">transformers</a>
                <a class="parent" href="index.html">xl</a>
            </p>
            <p>

                <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/xl/readme.md">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
                   rel="nofollow">
                    <img alt="Join Slact"
                         src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai"
                   rel="nofollow">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
            <div class='docs'>
                <div class='section-link'>
                    <a href='#section-0'>#</a>
                </div>
                <h1><a href="https://nn.labml.ai/transformers/xl/index.html">Transformer XL</a></h1>
<p>This is an implementation of
<a href="https://arxiv.org/abs/1901.02860">Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context</a>
in <a href="https://pytorch.org">PyTorch</a>.</p>
<p>Transformer has a limited attention span,
equal to the length of the sequence trained in parallel.
All these positions have a fixed positional encoding.
Transformer XL increases this attention span by letting
each of the positions pay attention to precalculated past embeddings.
For instance if the context length is $l$, it will keep the embeddings of
all layers for previous batch of length $l$ and feed them to current step.
If we use fixed-positional encodings these pre-calculated embeddings will have
the same positions as the current context.
They introduce relative positional encoding, where the positional encodings
are introduced at the attention calculation.</p>
<p>Annotated implementation of relative multi-headed attention is in <a href="relative_mha.html"><code>relative_mha.py</code></a>.</p>
<p>Here&rsquo;s <a href="experiment.html">the training code</a> and a notebook for training a transformer XL model on Tiny Shakespeare dataset.</p>
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/xl/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
<a href="https://web.lab-ml.com/run?uuid=d3b6760c692e11ebb6a70242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
            </div>
            <div class='code'>
                
            </div>
        </div>
    </div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
    MathJax.Hub.Config({
        tex2jax: {
            inlineMath: [ ['$','$'] ],
            displayMath: [ ['$$','$$'] ],
            processEscapes: true,
            processEnvironments: true
        },
        // Center justify equations in code and markdown cells. Elsewhere
        // we use CSS to left justify single line equations in code cells.
        displayAlign: 'center',
        "HTML-CSS": { fonts: ["TeX"] }
    });













</script>
</body>
</html>