mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 14:29:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			284 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
---
 | 
						|
title: Rectified Adam (RAdam) optimizer
 | 
						|
summary: A simple PyTorch implementation/tutorial of RAdam optimizer.
 | 
						|
---
 | 
						|
 | 
						|
# Rectified Adam (RAdam) optimizer
 | 
						|
 | 
						|
This implementation is based on
 | 
						|
[the official implementation](https://github.com/LiyuanLucasLiu/RAdam)
 | 
						|
of the paper
 | 
						|
[On the Variance of the Adaptive Learning Rate and Beyond](https://arxiv.org/abs/1908.03265).
 | 
						|
 | 
						|
We have implemented it in [PyTorch](https://pytorch.org)
 | 
						|
as an extension to [our AMSGrad implementation](amsgrad.html)
 | 
						|
thus requiring only the modifications to be implemented.
 | 
						|
 | 
						|
Adam optimizer sometimes converges to a bad local optima during the initial stages of the training;
 | 
						|
especially when training transformers.
 | 
						|
Researches use warmups to counter this; for the the initial training steps (warm-up stage)
 | 
						|
they use a low learning rate.
 | 
						|
This paper identifies the problem to be the high variance of adaptive learning rate
 | 
						|
during initial stages of training, and counters it using a new rectification term to
 | 
						|
reduce variance.
 | 
						|
 | 
						|
The paper also evaluates two variance reduction mechanisms:
 | 
						|
* **Adam-2k**: Only compute the adaptive learning rate ($v_t$ in [Adam](adam.html)) during the first 2k steps,
 | 
						|
without changing parameters or calculating momentum ($m_t$).
 | 
						|
* **Adam-eps**: Adam with large $\epsilon \approx 10^{-4}$.
 | 
						|
 | 
						|
## Rectified Adam
 | 
						|
 | 
						|
Let $\sigma(g_1, ..., g_t)$ and $\psi(g_1, ..., g_t)$ be the functions to calculate
 | 
						|
momentum and adaptive learning rate.
 | 
						|
For Adam, they are
 | 
						|
\begin{align}
 | 
						|
\sigma(g_1, ..., g_t) &=  \frac{(1 - \beta_1)\sum_{i=1}^t \beta_1^{t-i} g_i}{1 - \beta_1^t} \\
 | 
						|
\psi(g_1, ..., g_t) &=  \sqrt \frac{1 - \beta_2^t}{(1 - \beta_2)\sum_{i=1}^t \beta_2^{t-i} g_i^2}
 | 
						|
\end{align}
 | 
						|
 | 
						|
### Exponential moving average as simple moving average
 | 
						|
 | 
						|
The distribution of exponential moving average can be approximated as a simple moving average.
 | 
						|
\begin{align}
 | 
						|
p\Bigg(\frac{(1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} g_i^2}{1 - \beta_2^t} \Bigg) \approx
 | 
						|
p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
 | 
						|
\end{align}
 | 
						|
Here we are taking the simple moving average of the last $f(t,\beta_2)$ gradients.
 | 
						|
$f(t,\beta_2)$ satisfies the following,
 | 
						|
\begin{align}
 | 
						|
\frac{(1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot i}{1 - \beta_2^t} =
 | 
						|
\frac{\sum_{i=1}^{f(t,\beta_2)} (t+1-i)}{f(t,\beta_2)}
 | 
						|
\end{align}
 | 
						|
which gives,
 | 
						|
$$f(t,\beta_2) = \frac{2}{1-\beta_2} - 1 - \frac{2 t \beta_2^t}{1 - \beta_2^t}$$
 | 
						|
 | 
						|
### Scaled inverse chi-squared
 | 
						|
 | 
						|
From above we have
 | 
						|
$$
 | 
						|
p\Big( \psi^2(g_1, ..., g_t) \Big) \approx
 | 
						|
p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
 | 
						|
$$
 | 
						|
where $g_i \sim \mathcal{N}(0, \sigma^2)$.
 | 
						|
Note that $sigma$ here is the standard deviation and different from $\sigma(.)$ for momentum.
 | 
						|
 | 
						|
[Scaled inverse chi-squared](https://en.wikipedia.org/wiki/Scaled_inverse_chi-squared_distribution)
 | 
						|
is the distribution of squared inverse of mean of $p$ normal distributions.
 | 
						|
$$
 | 
						|
p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
 | 
						|
\sim
 | 
						|
\text{Scale-inv} \mathcal{X}^2(\rho,\frac{1}{\sigma^2})
 | 
						|
$$
 | 
						|
where $\rho = f(t,\beta_2)$.
 | 
						|
 | 
						|
### Rectification
 | 
						|
 | 
						|
They prove that variance of $\psi(.)$ decreases with $\rho$ when
 | 
						|
$\psi^2(.) \sim \text{Scale-inv} \mathcal{X}^2(\rho,\frac{1}{\sigma^2})$.
 | 
						|
 | 
						|
Therefore the variance is minimized at maximal $\rho$ which is
 | 
						|
$\rho_{\infty} = \frac{2}{1-\beta_2} - 1$. Let the minimum variance be $C_{\text{var}}$
 | 
						|
 | 
						|
In order to ensure that the adaptive learning
 | 
						|
rate $\psi(.)$ has consistent variance, we rectify the variance with $r$
 | 
						|
\begin{align}
 | 
						|
r = \sqrt{\frac{C_{\text{var}}}{Var\big[\psi(.)\big]}}
 | 
						|
\end{align}
 | 
						|
 | 
						|
### Approximating $Var[\psi(.)]$
 | 
						|
 | 
						|
They estimate $Var[\psi(.)] \approx \frac{Var[\psi^2(.)]}{4 \mathbb{E}[\psi^2(.)}$
 | 
						|
based on first order expansion of $\sqrt{\psi^2(.)}$
 | 
						|
🤪 I didn't get how it was derived.
 | 
						|
 | 
						|
From $\text{Scale-inv} \mathcal{X}^2$ distribution we have,
 | 
						|
\begin{align}
 | 
						|
\mathbb{E}\big[\psi^2(.)\big] &= \frac{\rho / \sigma^2}{\rho-2} \\
 | 
						|
Var\big[\psi^2(.)\big] &= \frac{2 \rho / \sigma^4}{(\rho-2)^2 (\rho - 2)}
 | 
						|
\end{align}
 | 
						|
which gives,
 | 
						|
$$
 | 
						|
Var[\psi(.)] \approx \frac{\rho}{2(\rho-2)(\rho-4)\sigma^2}
 | 
						|
$$
 | 
						|
 | 
						|
### Rectification term
 | 
						|
 | 
						|
We have
 | 
						|
\begin{align}
 | 
						|
r &= \sqrt{\frac{C_{\text{var}}}{Var\big[\psi(.)\big]}} \\
 | 
						|
Var[\psi(.)] &\approx \frac{\rho}{2(\rho-2)(\rho-4)\sigma^2}
 | 
						|
\end{align}
 | 
						|
 | 
						|
where $C_{\text{var}}$ is $Var\big[\psi(.)\big]$ for $\rho_\infty$.
 | 
						|
Lt $\rho$ and step $t$ be $\rho_t$, and $r_t$ be the rectification term
 | 
						|
at step $t$.
 | 
						|
 | 
						|
\begin{align}
 | 
						|
C_{\text{var}} &\approx \frac{\rho_\infty}{2(\rho_\infty-2)(\rho_\infty-4)\sigma^2} \\
 | 
						|
Var[\psi(g_1,...,g_t)] &\approx \frac{\rho_t}{2(\rho_t-2)(\rho_t-4)\sigma^2}
 | 
						|
\end{align}
 | 
						|
 | 
						|
This gives,
 | 
						|
\begin{align}
 | 
						|
r_t &= \sqrt{\frac{(\rho_t-2)(\rho_t-4)\rho_\infty}{(\rho_\infty-2)(\rho_\infty-4)\rho_t}}
 | 
						|
\end{align}
 | 
						|
"""
 | 
						|
 | 
						|
import math
 | 
						|
from typing import Dict, Optional
 | 
						|
 | 
						|
import torch
 | 
						|
 | 
						|
from labml_nn.optimizers import WeightDecay
 | 
						|
from labml_nn.optimizers.amsgrad import AMSGrad
 | 
						|
 | 
						|
 | 
						|
class RAdam(AMSGrad):
 | 
						|
    """
 | 
						|
    ## Rectified Adam Optimizer
 | 
						|
 | 
						|
    This class extends from AMSAdam optimizer defined in [`amsadam.py`](amsadam.html).
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
 | 
						|
                 weight_decay: WeightDecay = WeightDecay(),
 | 
						|
                 optimized_update: bool = True,
 | 
						|
                 amsgrad=False,
 | 
						|
                 degenerated_to_sgd=True, defaults=None):
 | 
						|
        """
 | 
						|
        ### Initialize the optimizer
 | 
						|
 | 
						|
        * `params` is the list of parameters
 | 
						|
        * `lr` is the learning rate $\alpha$
 | 
						|
        * `betas` is a tuple of ($\beta_1$, $\beta_2$)
 | 
						|
        * `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
 | 
						|
        * `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
 | 
						|
        * 'optimized_update' is a flag whether to optimize the bias correction of the second moment
 | 
						|
          by doing it after adding $\epsilon$
 | 
						|
        * `amsgrad` is a flag indicating whether to use AMSGrad or fallback to plain Adam
 | 
						|
        * `degenerate_to_sgd` whether to use sgd when the rectification term $r_t is intractable.
 | 
						|
        * `defaults` is a dictionary of default for group values.
 | 
						|
         This is useful when you want to extend the class `RAdam`.
 | 
						|
        """
 | 
						|
        self.degenerated_to_sgd = degenerated_to_sgd
 | 
						|
        super().__init__(params, lr, betas, eps, weight_decay, optimized_update, amsgrad, defaults)
 | 
						|
 | 
						|
    def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
 | 
						|
        """
 | 
						|
        ### Take an update step for a given parameter tensor
 | 
						|
 | 
						|
        * `state` is the optimizer state of the parameter (tensor)
 | 
						|
        * `group` stores optimizer attributes of the parameter group
 | 
						|
        * `grad` is the current gradient tensor  $g_t$ for the parameter $\theta_{t-1}$
 | 
						|
        * `param` is the parameter tensor $\theta_{t-1}$
 | 
						|
        """
 | 
						|
 | 
						|
        # Calculate weight decay
 | 
						|
        grad = self.weight_decay(param, grad, group)
 | 
						|
 | 
						|
        # Get $m_t$ and $v_t$; i.e. $\sigma(.)$ and $\psi(.)$ without bias correction
 | 
						|
        m, v = self.get_mv(state, group, grad)
 | 
						|
 | 
						|
        # Calculate $t$ the number of optimizer steps
 | 
						|
        state['step'] += 1
 | 
						|
 | 
						|
        # Perform *RAdam* update
 | 
						|
        self.r_adam_update(state, group, param, m, v)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def calc_rectification_term(beta2: float, step: int) -> Optional[float]:
 | 
						|
        """
 | 
						|
        ### Calculate rectification term $r_t$
 | 
						|
        """
 | 
						|
 | 
						|
        # $\beta_2^t$
 | 
						|
        beta2_t = beta2 ** step
 | 
						|
        # $$\rho_\infty = \frac{2}{1 - \beta_2} - 1$$
 | 
						|
        rho_inf = 2 / (1 - beta2) - 1
 | 
						|
        # $$\rho_t = \frac{2}{1-\beta_2} - 1 - \frac{2 t \beta_2^t}{1-\beta_2^t}$$
 | 
						|
        rho = rho_inf - 2 * step * beta2_t / (1 - beta2_t)
 | 
						|
 | 
						|
        # $r_t$ is tractable when $\rho_t >= 4$.
 | 
						|
        # We are being a little more conservative since it's an approximated value
 | 
						|
        if rho >= 5:
 | 
						|
            # $$r_t = \sqrt{\frac{(\rho_t-2)(\rho_t-4)\rho_\infty}{(\rho_\infty-2)(\rho_\infty-4)\rho_t}}$$
 | 
						|
            r2 = (rho - 4) / (rho_inf - 4) * (rho - 2) / rho * rho_inf / (rho_inf - 2)
 | 
						|
            return math.sqrt(r2)
 | 
						|
        else:
 | 
						|
            return None
 | 
						|
 | 
						|
    def r_adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
 | 
						|
                      m: torch.Tensor, v: torch.Tensor):
 | 
						|
        """
 | 
						|
        ### Do the *RAdam* parameter update
 | 
						|
 | 
						|
        * `state` is the optimizer state of the parameter (tensor)
 | 
						|
        * `group` stores optimizer attributes of the parameter group
 | 
						|
        * `param` is the parameter tensor $\theta_{t-1}$
 | 
						|
        * `m` and `v` are the uncorrected first and second moments $m_t$ and $v_t$;
 | 
						|
          i.e. $\sigma(.)$ and $\psi(.)$ without bias correction
 | 
						|
        """
 | 
						|
 | 
						|
        # Get $\beta_1$ and $\beta_2$
 | 
						|
        beta1, beta2 = group['betas']
 | 
						|
        # Bias correction term for $\hat{m}_t$, $1 - \beta_1^t$
 | 
						|
        bias_correction1 = 1 - beta1 ** state['step']
 | 
						|
        # Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$
 | 
						|
        bias_correction2 = 1 - beta2 ** state['step']
 | 
						|
 | 
						|
        r = self.calc_rectification_term(beta2, state['step'])
 | 
						|
 | 
						|
        # Get learning rate
 | 
						|
        lr = self.get_lr(state, group)
 | 
						|
 | 
						|
        # If $r_t$ is intractable
 | 
						|
        if r is not None:
 | 
						|
            # Whether to optimize the computation by combining scalar computations
 | 
						|
            if self.optimized_update:
 | 
						|
                # Denominator $\sqrt{v_t} + \hat{\epsilon}$
 | 
						|
                denominator = v.sqrt().add_(group['eps'])
 | 
						|
                # Step size $\alpha \sqrt{r_t} * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
 | 
						|
                step_size = lr * math.sqrt(bias_correction2) * r / bias_correction1
 | 
						|
                # Update parameters $\theta_t \leftarrow \theta_{t-1} - \alpha \sqrt{r_t} \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
 | 
						|
                #  \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
 | 
						|
                param.data.addcdiv_(m, denominator, value=-step_size)
 | 
						|
            # Computation without optimization
 | 
						|
            else:
 | 
						|
                # Denominator  $\frac{\sqrt{v_t}}{\sqrt{1-\beta_2^t}} + \epsilon$
 | 
						|
                denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
 | 
						|
                # Step size $\frac{\alpha \sqrt{r_t}}{1-\beta_1^t}$
 | 
						|
                step_size = lr * r / bias_correction1
 | 
						|
                # Update parameters $\theta_t \leftarrow \theta_{t-1} - \alpha \sqrt{r_t} \cdot
 | 
						|
                # \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$
 | 
						|
                param.data.addcdiv_(m, denominator, value=-step_size)
 | 
						|
 | 
						|
        # If $r_t$ is intractable do a SGD with momentum
 | 
						|
        elif self.degenerated_to_sgd:
 | 
						|
            # Step size $\frac{\alpha}{1-\beta_1^t}$
 | 
						|
            step_size = lr / bias_correction1
 | 
						|
            # Update parameters
 | 
						|
            # $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t$
 | 
						|
            param.data.add_(m, alpha=-step_size)
 | 
						|
 | 
						|
 | 
						|
def _test_rectification_term():
 | 
						|
    """
 | 
						|
    ### Plot $r_t$ against $t$ for various $\beta_2$
 | 
						|
 | 
						|
    
 | 
						|
    """
 | 
						|
    import matplotlib.pyplot as plt
 | 
						|
    import numpy as np
 | 
						|
 | 
						|
    beta2 = [0.9999, 0.999, 0.99, 0.9, 0.8, 0.6, 0.5]
 | 
						|
    plt.plot(np.arange(1, 5_000), [[RAdam.calc_rectification_term(b, i) for b in beta2] for i in range(1, 5_000)])
 | 
						|
    plt.legend(beta2)
 | 
						|
    plt.title("Optimizer")
 | 
						|
    plt.show()
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    _test_rectification_term()
 |