Files
2024-06-27 19:35:37 +05:30

220 lines
12 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="zh">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="labml.ai 带注释的 PyTorch 版论文实现"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/index.html"/>
<meta property="og:title" content="labml.ai 带注释的 PyTorch 版论文实现"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="labml.ai 带注释的 PyTorch 版论文实现"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="labml.ai 带注释的 PyTorch 版论文实现"/>
<meta property="og:description" content=""/>
<title>labml.ai 带注释的 PyTorch 版论文实现</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="./pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/__init__.py" target="_blank">
View code on Github</a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1><a href="index.html">labml.ai 带注释的 PyTorch 版论文实现</a></h1>
<p>这是一个用 PyTorch 实现各种神经网络和相关算法的集合。每个算法的<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations">代码实现</a>都有详细的解释说明,且在<a href="index.html">网站</a>上与代码逐行对应。我们相信,这些内容将帮助您更好地理解这些算法。</p>
<p><img alt="Screenshot" src="dqn-light.png"></p>
<p>我们正在积极维护这个仓库并添加新的代码实现。<a href="https://twitter.com/labmlai"><img alt="Twitter" src="https://img.shields.io/twitter/follow/labmlai?style=social"></a>以获取更新。</p>
<h2>翻译</h2>
<h3><strong><a href="https://nn.labml.ai">英语(原版)</a></strong></h3>
</a><h3><strong><a href="https://nn.labml.ai/zh/">中文(翻译)</strong></h3>
</a><h3><strong><a href="https://nn.labml.ai/ja/">日语(翻译)</strong></h3>
<h2>论文实现</h2>
<h4><a href="transformers/index.html">Transformers</a></h4>
<ul><li><a href="transformers/mha.html">多头注意力</a></li>
<li><a href="transformers/models.html">Transformer 构建模块</a></li>
<li><a href="transformers/xl/index.html">Transformer XL</a></li>
<li><a href="transformers/xl/relative_mha.html">相对多头注意力</a></li>
<li><a href="transformers/rope/index.html">旋转式位置编码 (ROPE)</a></li>
<li><a href="transformers/alibi/index.html">线性偏差注意力 (AliBI)</a></li>
<li><a href="transformers/retro/index.html">RETRO</a></li>
<li><a href="transformers/compressive/index.html">压缩 Transformer</a></li>
<li><a href="transformers/gpt/index.html">GPT 架构</a></li>
<li><a href="transformers/glu_variants/simple.html">GLU 变体</a></li>
<li><a href="transformers/knn/index.html">kNN-LM通过记忆实现泛化</a></li>
<li><a href="transformers/feedback/index.html">自反馈 Transformer</a></li>
<li><a href="transformers/switch/index.html">Switch Transformer</a></li>
<li><a href="transformers/fast_weights/index.html">快速权重 Transformer</a></li>
<li><a href="transformers/fnet/index.html">FNet</a></li>
<li><a href="transformers/aft/index.html">无注意力 Transformer</a></li>
<li><a href="transformers/mlm/index.html">掩码语言模型</a></li>
<li><a href="transformers/mlp_mixer/index.html">MLP-Mixer一种用于视觉的全 MLP 架构</a></li>
<li><a href="transformers/gmlp/index.html">门控多层感知器 (gMLP)</a></li>
<li><a href="transformers/vit/index.html">视觉 Transformer (ViT)</a></li>
<li><a href="transformers/primer_ez/index.html">Primer</a></li>
<li><a href="transformers/hour_glass/index.html">沙漏网络</a></li></ul>
<h4><a href="neox/index.html">Eleuther GPT-neox</a></h4>
<ul><li><a href="neox/samples/generate.html">在一块 48GB GPU 上生成</a></li>
<li><a href="neox/samples/finetune.html">在两块 48GB GPU 上微调</a></li>
<li><a href="neox/utils/llm_int8.html">llm.int8 ()</a></li></ul>
<h4><a href="diffusion/index.html">扩散模型</a></h4>
<ul><li><a href="diffusion/ddpm/index.html">去噪扩散概率模型 (DDPM)</a></li>
<li><a href="diffusion/stable_diffusion/sampler/ddim.html">去噪扩散隐式模型 (DDIM)</a></li>
<li><a href="diffusion/stable_diffusion/latent_diffusion.html">潜在扩散模型</a></li>
<li><a href="diffusion/stable_diffusion/index.html">Stable Diffusion</a></li></ul>
<h4><a href="gan/index.html">生成对抗网络</a></h4>
<ul><li><a href="gan/original/index.html">原始 GAN</a></li>
<li><a href="gan/dcgan/index.html">使用深度卷积网络的 GAN</a></li>
<li><a href="gan/cycle_gan/index.html">循环 GAN</a></li>
<li><a href="gan/wasserstein/index.html">Wasserstein GAN</a></li>
<li><a href="gan/wasserstein/gradient_penalty/index.html">具有梯度惩罚的 Wasserstein GAN</a></li>
<li><a href="gan/stylegan/index.html">StyleGan 2</a></li></ul>
<h4><a href="recurrent_highway_networks/index.html">循环高速路网络</a></h4>
<h4><a href="lstm/index.html">LSTM</a></h4>
<h4><a href="hypernetworks/hyper_lstm.html">超网络-HyperLSTM</a></h4>
<h4><a href="resnet/index.html">ResNet</a></h4>
<h4><a href="conv_mixer/index.html">ConvMixer</a></h4>
<h4><a href="capsule_networks/index.html">胶囊网络</a></h4>
<h4><a href="unet/index.html">U-Net</a></h4>
<h4><a href="sketch_rnn/index.html">Sketch RNN</a></h4>
<h4>✨ 图神经网络</h4>
<ul><li><a href="graphs/gat/index.html">图注意力网络 (GAT)</a></li>
<li><a href="graphs/gatv2/index.html">图注意力网络 v2 (GATv2)</a></li></ul>
<h4><a href="rl/index.html">强化学习</a></h4>
<ul><li><a href="rl/ppo/index.html">近端策略优化</a><a href="rl/ppo/gae.html">广义优势估计</a></li>
<li>具有<a href="rl/dqn/model.html">对抗网络</a><a href="rl/dqn/replay_buffer.html">优先回放 </a>和双 Q 网络的<a href="rl/dqn/index.html">深度 Q 网络</a></li></ul>
<h4><a href="cfr/index.html">虚拟遗憾最小化CFR</a></h4>
<p>使用 CFR 解决诸如扑克等不完全信息游戏</p>
<ul><li><a href="cfr/kuhn/index.html">库恩扑克</a></li></ul>
<h4><a href="optimizers/index.html">优化器</a></h4>
<ul><li><a href="optimizers/adam.html">Adam 优化器</a></li>
<li><a href="optimizers/amsgrad.html">AMSGrad 优化器</a></li>
<li><a href="optimizers/adam_warmup.html">具有预热的 Adam 优化器</a></li>
<li><a href="optimizers/noam.html">Noam 优化器</a></li>
<li><a href="optimizers/radam.html">RAdam 优化器</a></li>
<li><a href="optimizers/ada_belief.html">AdaBelief 优化器</a></li>
<li><a href="optimizers/sophia.html">Sophia-G Optimizer</a></li></ul>
<h4><a href="normalization/index.html">归一化层</a></h4>
<ul><li><a href="normalization/batch_norm/index.html">批量归一化</a></li>
<li><a href="normalization/layer_norm/index.html">层归一化</a></li>
<li><a href="normalization/instance_norm/index.html">实例归一化</a></li>
<li><a href="normalization/group_norm/index.html">组归一化</a></li>
<li><a href="normalization/weight_standardization/index.html">权重标准化</a></li>
<li><a href="normalization/batch_channel_norm/index.html">批-通道归一化</a></li>
<li><a href="normalization/deep_norm/index.html">DeepNorm</a></li></ul>
<h4><a href="distillation/index.html">蒸馏</a></h4>
<h4><a href="adaptive_computation/index.html">自适应计算</a></h4>
<ul><li><a href="adaptive_computation/ponder_net/index.html">PonderNet</a></li></ul>
<h4><a href="uncertainty/index.html">不确定性</a></h4>
<ul><li><a href="uncertainty/evidence/index.html">用于量化分类不确定性的证据深度学习</a></li></ul>
<h4><a href="activations/index.html">激活函数</a></h4>
<ul><li><a href="activations/fta/index.html">模糊平铺激活函数</a></li></ul>
<h4><a href="sampling/index.html">语言模型采样技术</a></h4>
<ul><li><a href="sampling/greedy.html">贪婪采样</a></li>
<li><a href="sampling/temperature.html">温度采样</a></li>
<li><a href="sampling/top_k.html">Top-K 采样</a></li>
<li><a href="sampling/nucleus.html">核采样</a></li></ul>
<h4><a href="scaling/index.html">可扩展训练/推理</a></h4>
<ul><li><a href="scaling/zero3/index.html">ZeRO-3 内存优化</a></li></ul>
<h3>安装</h3>
<pre class="highlight lang-bash"><code><span></span>pip<span class="w"> </span>install<span class="w"> </span>labml-nn</code></pre>
</div>
<div class='code'>
<div class="highlight"><pre></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=./interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>