mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-20 21:21:17 +08:00
<!DOCTYPE html> <html lang="zh"> <head> <meta http-equiv="content-type" content="text/html;charset=utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1.0"/> <meta name="description" content=""/> <meta name="twitter:card" content="summary"/> <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/> <meta name="twitter:title" content="图关注网络 (GAT)"/> <meta name="twitter:description" content=""/> <meta name="twitter:site" content="@labmlai"/> <meta name="twitter:creator" content="@labmlai"/> <meta property="og:url" content="https://nn.labml.ai/graphs/gat/readme.html"/> <meta property="og:title" content="图关注网络 (GAT)"/> <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/> <meta property="og:site_name" content="图关注网络 (GAT)"/> <meta property="og:type" content="object"/> <meta property="og:title" content="图关注网络 (GAT)"/> <meta property="og:description" content=""/> <title>图关注网络 (GAT)</title> <link rel="shortcut icon" href="/icon.png"/> <link rel="stylesheet" href="../../pylit.css?v=1"> <link rel="canonical" href="https://nn.labml.ai/graphs/gat/readme.html"/> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous"> <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script> <script> window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('js', new Date()); gtag('config', 'G-4V3HC8HBLH'); </script> </head> <body> <div id='container'> <div id="background"></div> <div class='section'> <div class='docs'> <p> <a class="parent" href="/">home</a> <a class="parent" href="../index.html">graphs</a> <a class="parent" href="index.html">gat</a> </p> <p> <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank"> <img alt="Github" src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social" style="max-width:100%;"/></a> <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank"> <img alt="Twitter" src="https://img.shields.io/twitter/follow/labmlai?style=social" style="max-width:100%;"/></a> </p> <p> <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/graphs/gat/readme.md" target="_blank"> View code on Github</a> </p> </div> </div> <div class='section' id='section-0'> <div class='docs'> <div class='section-link'> <a href='#section-0'>#</a> </div> <h1><a href="https://nn.labml.ai/graphs/gat/index.html">图表注意力网络 (GAT)</a></h1> <p>这是 <a href="https://pytorch.org">PyTorch</a> 对《<a href="https://arxiv.org/abs/1710.10903">图形注意力网络</a>》论文的实现。</p> <p>GAT 处理图表数据。图由节点和连接节点的边组成。例如,在 Cora 数据集中,节点是研究论文,边缘是连接论文的引文。</p> <p>GAT 使用蒙面自注意力,有点类似于<a href="https://nn.labml.ai/transformers/mha.html">变形金刚</a>。GAT 由相互堆叠的图表注意力层组成。每个图注意力层都将节点嵌入作为转换后的嵌入的输入和输出获得节点。节点嵌入会注意它所连接的其他节点的嵌入。图形注意力层的详细信息与实现一起包括在内。</p> <p>以下是<a href="https://nn.labml.ai/graphs/gat/experiment.html">在 Cora 数据集上训练两层 GAT 的训练代码</a>。</p> </div> <div class='code'> </div> </div> <div class='footer'> <a href="https://labml.ai">labml.ai</a> </div> </div> <script src=../../interactive.js?v=1"></script> <script> function handleImages() { var images = document.querySelectorAll('p>img') for (var i = 0; i < images.length; ++i) { handleImage(images[i]) } } function handleImage(img) { img.parentElement.style.textAlign = 'center' var modal = document.createElement('div') modal.id = 'modal' var modalContent = document.createElement('div') modal.appendChild(modalContent) var modalImage = document.createElement('img') modalContent.appendChild(modalImage) var span = document.createElement('span') span.classList.add('close') span.textContent = 'x' modal.appendChild(span) img.onclick = function () { console.log('clicked') document.body.appendChild(modal) modalImage.src = img.src } span.onclick = function () { document.body.removeChild(modal) } } handleImages() </script> </body> </html>