Files
2024-06-21 19:35:22 +05:30

535 lines
39 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="Nearest neighbor retrieval and creation of the database"/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Database for nearest neighbor retrieval"/>
<meta name="twitter:description" content="Nearest neighbor retrieval and creation of the database"/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/transformers/retro/database.html"/>
<meta property="og:title" content="Database for nearest neighbor retrieval"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="Database for nearest neighbor retrieval"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Database for nearest neighbor retrieval"/>
<meta property="og:description" content="Nearest neighbor retrieval and creation of the database"/>
<title>Database for nearest neighbor retrieval</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/transformers/retro/database.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">transformers</a>
<a class="parent" href="index.html">retro</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/retro/database.py" target="_blank">
View code on Github</a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Database for nearest neighbor retrieval</h1>
<p>This is the build the database and retrieves nearest neighbors for <a href="index.html">RETRO model</a>.</p>
<p>We use <a href="https://faiss.ai/">FAISS library</a> for the database whilst the paper had used the SCaNN library.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">16</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span>
<span class="lineno">17</span>
<span class="lineno">18</span><span class="kn">import</span> <span class="nn">faiss</span>
<span class="lineno">19</span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="lineno">20</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">21</span>
<span class="lineno">22</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">lab</span><span class="p">,</span> <span class="n">monit</span>
<span class="lineno">23</span><span class="kn">from</span> <span class="nn">labml_helpers.datasets.text</span> <span class="kn">import</span> <span class="n">TextFileDataset</span>
<span class="lineno">24</span><span class="kn">from</span> <span class="nn">labml_nn.transformers.retro.bert_embeddings</span> <span class="kn">import</span> <span class="n">BERTChunkEmbeddings</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Build Database</h2>
<ul><li><code class="highlight"><span></span><span class="n">chunk_len</span></code>
is the length of a chunk (number of characters) </li>
<li><code class="highlight"><span></span><span class="n">batch_size</span></code>
is the batch size to use when calculating <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqa" style=""><span class="mord text" style=""><span class="mord" style="">B</span><span class="mord sizing reset-size6 size5" style=""><span class="mord" style="">ERT</span></span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="margin-right:0.10903em">N</span><span class="mclose" style="">)</span></span></span></span></span></span> </li>
<li><code class="highlight"><span></span><span class="n">d_emb</span></code>
is the number of features in <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqa" style=""><span class="mord text" style=""><span class="mord" style="">B</span><span class="mord sizing reset-size6 size5" style=""><span class="mord" style="">ERT</span></span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="margin-right:0.10903em">N</span><span class="mclose" style="">)</span></span></span></span></span></span> embeddings <a href="https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFPQ.html">lists to select in FAISS index</a> </li>
<li><code class="highlight"><span></span><span class="n">n_centeroids</span></code>
is the number of lists in the index </li>
<li><code class="highlight"><span></span><span class="n">code_size</span></code>
encoded vector size in the index </li>
<li><code class="highlight"><span></span><span class="n">n_probe</span></code>
is the number of lists to probe </li>
<li>`n_train&#x27; is the number of keys to train the index on</li></ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">27</span><span class="k">def</span> <span class="nf">build_database</span><span class="p">(</span><span class="n">chunk_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">64</span><span class="p">,</span> <span class="n">d_emb</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">768</span><span class="p">,</span> <span class="n">n_centeroids</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">256</span><span class="p">,</span>
<span class="lineno">28</span> <span class="n">code_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">64</span><span class="p">,</span> <span class="n">n_probe</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span><span class="p">,</span> <span class="n">n_train</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">50_000</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>Load the dataset text file </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">43</span> <span class="n">dataset</span> <span class="o">=</span> <span class="n">TextFileDataset</span><span class="p">(</span>
<span class="lineno">44</span> <span class="n">lab</span><span class="o">.</span><span class="n">get_data_path</span><span class="p">()</span> <span class="o">/</span> <span class="s1">&#39;tiny_shakespeare.txt&#39;</span><span class="p">,</span>
<span class="lineno">45</span> <span class="nb">list</span><span class="p">,</span>
<span class="lineno">46</span> <span class="n">url</span><span class="o">=</span><span class="s1">&#39;https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt&#39;</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Get training data (a string) </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">text</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">train</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Split the text into chunks of <code class="highlight"><span></span><span class="n">chunk_length</span></code>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">chunks</span> <span class="o">=</span> <span class="p">[</span><span class="n">text</span><span class="p">[</span><span class="n">i</span><span class="p">:</span><span class="n">i</span> <span class="o">+</span> <span class="n">chunk_len</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">text</span><span class="p">),</span> <span class="n">chunk_len</span><span class="p">)</span> <span class="k">if</span> <span class="n">i</span> <span class="o">+</span> <span class="n">chunk_len</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">&lt;</span> <span class="nb">len</span><span class="p">(</span><span class="n">text</span><span class="p">)]</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Get the offsets of each of the chunks </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span> <span class="n">chunk_offsets</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">text</span><span class="p">),</span> <span class="n">chunk_len</span><span class="p">)</span> <span class="k">if</span> <span class="n">i</span> <span class="o">+</span> <span class="n">chunk_len</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">&lt;</span> <span class="nb">len</span><span class="p">(</span><span class="n">text</span><span class="p">)])</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Number of chunks </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">56</span> <span class="n">n_chunks</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">chunks</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Initialize BERT to get <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqa" style=""><span class="mord text" style=""><span class="mord" style="">B</span><span class="mord sizing reset-size6 size5" style=""><span class="mord" style="">ERT</span></span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="margin-right:0.10903em">N</span><span class="mclose" style="">)</span></span></span></span></span></span> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">59</span> <span class="n">bert</span> <span class="o">=</span> <span class="n">BERTChunkEmbeddings</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">&#39;cuda:0&#39;</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Get chunk embeddings by processing <code class="highlight"><span></span><span class="n">batch_size</span></code>
number of chunks on each iteration </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">62</span> <span class="n">chunk_emb</span> <span class="o">=</span> <span class="p">[]</span>
<span class="lineno">63</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">monit</span><span class="o">.</span><span class="n">iterate</span><span class="p">(</span><span class="s1">&#39;Get embeddings&#39;</span><span class="p">,</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_chunks</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)):</span>
<span class="lineno">64</span> <span class="n">chunk_emb</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">bert</span><span class="p">(</span><span class="n">chunks</span><span class="p">[</span><span class="n">i</span><span class="p">:</span> <span class="n">i</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">])</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Merge them into a single tensor </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">66</span> <span class="n">chunk_emb</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span><span class="n">chunk_emb</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Create the <a href="https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexIVFPQ.html">FAISS index</a> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">69</span> <span class="n">quantizer</span> <span class="o">=</span> <span class="n">faiss</span><span class="o">.</span><span class="n">IndexFlatL2</span><span class="p">(</span><span class="n">d_emb</span><span class="p">)</span>
<span class="lineno">70</span> <span class="n">index</span> <span class="o">=</span> <span class="n">faiss</span><span class="o">.</span><span class="n">IndexIVFPQ</span><span class="p">(</span><span class="n">quantizer</span><span class="p">,</span> <span class="n">d_emb</span><span class="p">,</span> <span class="n">n_centeroids</span><span class="p">,</span> <span class="n">code_size</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span>
<span class="lineno">71</span> <span class="n">index</span><span class="o">.</span><span class="n">nprobe</span> <span class="o">=</span> <span class="n">n_probe</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Get a random sample of the the chunk indexes </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">74</span> <span class="n">random_sample</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">n_chunks</span><span class="p">),</span> <span class="n">size</span><span class="o">=</span><span class="p">[</span><span class="nb">min</span><span class="p">(</span><span class="n">n_train</span><span class="p">,</span> <span class="n">n_chunks</span><span class="p">)],</span> <span class="n">replace</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Train the index to store the keys </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">77</span> <span class="k">with</span> <span class="n">monit</span><span class="o">.</span><span class="n">section</span><span class="p">(</span><span class="s1">&#39;Train index&#39;</span><span class="p">):</span>
<span class="lineno">78</span> <span class="n">index</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">chunk_emb</span><span class="p">[</span><span class="n">random_sample</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>Add the chunks to the index in batches of size <code class="highlight"><span></span><span class="mi">1024</span></code>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">81</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">monit</span><span class="o">.</span><span class="n">iterate</span><span class="p">(</span><span class="s1">&#39;Index&#39;</span><span class="p">,</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_chunks</span><span class="p">,</span> <span class="mi">1024</span><span class="p">)):</span>
<span class="lineno">82</span> <span class="n">e</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">s</span> <span class="o">+</span> <span class="mi">1024</span><span class="p">,</span> <span class="n">n_chunks</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Add to index </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">84</span> <span class="n">index</span><span class="o">.</span><span class="n">add_with_ids</span><span class="p">(</span><span class="n">chunk_emb</span><span class="p">[</span><span class="n">s</span><span class="p">:</span><span class="n">e</span><span class="p">],</span> <span class="n">chunk_offsets</span><span class="p">[</span><span class="n">s</span><span class="p">:</span> <span class="n">e</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Save the index </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">87</span> <span class="k">with</span> <span class="n">monit</span><span class="o">.</span><span class="n">section</span><span class="p">(</span><span class="s1">&#39;Save&#39;</span><span class="p">):</span>
<span class="lineno">88</span> <span class="n">faiss</span><span class="o">.</span><span class="n">write_index</span><span class="p">(</span><span class="n">index</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">lab</span><span class="o">.</span><span class="n">get_data_path</span><span class="p">()</span> <span class="o">/</span> <span class="s1">&#39;retro.index&#39;</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<h2>Index for retrieving nearest neighbors</h2>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">91</span><span class="k">class</span> <span class="nc">RetroIndex</span><span class="p">:</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<ul><li><code class="highlight"><span></span><span class="n">chunk_len</span></code>
is the chunk length </li>
<li><code class="highlight"><span></span><span class="n">n_probe</span></code>
is the number of lists to probe </li>
<li><code class="highlight"><span></span><span class="n">n_neighbors</span></code>
is the number of neighbors to retrieve </li>
<li><code class="highlight"><span></span><span class="n">n_extra</span></code>
is the number of extra neighbors to retrieve since we will be removing neighbors overlapping with the query chunk </li>
<li><code class="highlight"><span></span><span class="n">exclude_neighbor_span</span></code>
is the extra text length to avoid when checking for overlaps</li></ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">96</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">chunk_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span><span class="p">,</span> <span class="n">n_probe</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span><span class="p">,</span>
<span class="lineno">97</span> <span class="n">n_neighbors</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span> <span class="n">n_extra</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span>
<span class="lineno">98</span> <span class="n">exclude_neighbor_span</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">108</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_neighbors</span> <span class="o">=</span> <span class="n">n_neighbors</span>
<span class="lineno">109</span> <span class="bp">self</span><span class="o">.</span><span class="n">chunk_len</span> <span class="o">=</span> <span class="n">chunk_len</span>
<span class="lineno">110</span> <span class="bp">self</span><span class="o">.</span><span class="n">exclude_neighbor_span</span> <span class="o">=</span> <span class="n">exclude_neighbor_span</span>
<span class="lineno">111</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_extra</span> <span class="o">=</span> <span class="n">n_extra</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Initialize BERT to get <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqa" style=""><span class="mord text" style=""><span class="mord" style="">B</span><span class="mord sizing reset-size6 size5" style=""><span class="mord" style="">ERT</span></span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="margin-right:0.10903em">N</span><span class="mclose" style="">)</span></span></span></span></span></span> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">114</span> <span class="bp">self</span><span class="o">.</span><span class="n">bert</span> <span class="o">=</span> <span class="n">BERTChunkEmbeddings</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">&#39;cuda:0&#39;</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Load the database </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">116</span> <span class="k">with</span> <span class="n">monit</span><span class="o">.</span><span class="n">section</span><span class="p">(</span><span class="s1">&#39;Load index&#39;</span><span class="p">):</span>
<span class="lineno">117</span> <span class="bp">self</span><span class="o">.</span><span class="n">index</span> <span class="o">=</span> <span class="n">faiss</span><span class="o">.</span><span class="n">read_index</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">lab</span><span class="o">.</span><span class="n">get_data_path</span><span class="p">()</span> <span class="o">/</span> <span class="s1">&#39;retro.index&#39;</span><span class="p">))</span>
<span class="lineno">118</span> <span class="bp">self</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">nprobe</span> <span class="o">=</span> <span class="n">n_probe</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<h4>Filter neighbors that overlap with the query</h4>
<p>The positions of the neighbors are given by <code class="highlight"><span></span><span class="n">neighbor_offsets</span></code>
and the position of the query chunk is <code class="highlight"><span></span><span class="n">offset</span></code>
.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">120</span> <span class="k">def</span> <span class="nf">filter_neighbors</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">offset</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">neighbor_offsets</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]):</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">127</span> <span class="k">return</span> <span class="p">[</span><span class="n">n</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">neighbor_offsets</span>
<span class="lineno">128</span> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;</span> <span class="n">offset</span> <span class="o">-</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">chunk_len</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">exclude_neighbor_span</span><span class="p">)</span>
<span class="lineno">129</span> <span class="ow">or</span> <span class="n">n</span> <span class="o">&gt;</span> <span class="n">offset</span> <span class="o">+</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">chunk_len</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">exclude_neighbor_span</span><span class="p">)]</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<h3>Retrieve nearest neighbors</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">131</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">query_chunks</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">],</span> <span class="n">offsets</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]]):</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Get <span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqa" style=""><span class="mord text" style=""><span class="mord" style="">B</span><span class="mord sizing reset-size6 size5" style=""><span class="mord" style="">ERT</span></span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="margin-right:0.10903em">N</span><span class="mclose" style="">)</span></span></span></span></span></span> of query chunks </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">137</span> <span class="n">emb</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bert</span><span class="p">(</span><span class="n">query_chunks</span><span class="p">)</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-25'>
<div class='docs'>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Get <code class="highlight"><span></span><span class="n">n_neighbors</span> <span class="o">+</span> <span class="n">n_extra</span></code>
nearest neighbors from the database </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">140</span> <span class="n">distance</span><span class="p">,</span> <span class="n">neighbor_offsets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">search</span><span class="p">(</span><span class="n">emb</span><span class="o">.</span><span class="n">numpy</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_neighbors</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_extra</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-26'>
<div class='docs'>
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>If the query chunk offsets are given filter out overlapping chunks </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">143</span> <span class="k">if</span> <span class="n">offsets</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="lineno">144</span> <span class="n">neighbor_offsets</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">filter_neighbors</span><span class="p">(</span><span class="n">off</span><span class="p">,</span> <span class="n">n_off</span><span class="p">)</span>
<span class="lineno">145</span> <span class="k">for</span> <span class="n">off</span><span class="p">,</span> <span class="n">n_off</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">offsets</span><span class="p">,</span> <span class="n">neighbor_offsets</span><span class="p">)]</span></pre></div>
</div>
</div>
<div class='section' id='section-27'>
<div class='docs'>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
<p>Get the closest <code class="highlight"><span></span><span class="n">n_neighbors</span></code>
after filtering </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">148</span> <span class="n">neighbor_offsets</span> <span class="o">=</span> <span class="p">[</span><span class="n">n_off</span><span class="p">[:</span><span class="bp">self</span><span class="o">.</span><span class="n">n_neighbors</span><span class="p">]</span> <span class="k">for</span> <span class="n">n_off</span> <span class="ow">in</span> <span class="n">neighbor_offsets</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-28'>
<div class='docs'>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
<p> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">151</span> <span class="k">return</span> <span class="n">neighbor_offsets</span></pre></div>
</div>
</div>
<div class='section' id='section-29'>
<div class='docs'>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">155</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">156</span> <span class="n">build_database</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=../../interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>