Files
2020-12-06 15:23:57 +05:30

190 lines
7.3 KiB
Python

"""
# Adam Optimizer
This is an implementation of popular optimizer *Adam* from paper
[Adam: A Method for Stochastic Optimization](https://arxiv.org/abs/1412.6980v9).
We extend the class `GenericAdaptiveOptimizer` defined in [__init__.py](index.html)
to implement the Adam optimizer.
*Adam* update is,
\begin{align}
m_t &\leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t \\
v_t &\leftarrow \beta_2 v_{t-1} + (1 - \beta_2) \cdot g_t^2 \\
\hat{m}_t &\leftarrow \frac{m_t}{1-\beta_1^t} \\
\hat{v}_t &\leftarrow \frac{v_t}{1-\beta_2^t} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
\end{align}
where $\alpha$, $\beta_1$, $\beta_2$ and $\epsilon$ are scalar hyper parameters.
$m_t$ and $v_t$ are first and second order moments.
$\hat{m}_t$ and $\hat{v}_t$ are biased corrected moments.
$\epsilon$ is used as a fix for division by zero error, but also acts as a form of a hyper-parameter
that acts against variance in gradients.
Effective step taken assuming $\epsilon = 0$ is,
$$\Delta t = \alpha \cdot \frac{\hat{m}_t}{\hat{v}_t}$$
This is bounded by,
$$\vert \Delta t \vert \le \alpha \cdot \frac{1 - \beta_1}{\sqrt{1-\beta_2}}$$
when $1-\beta_1 \gt \sqrt{1-\beta_2}$
and
$$\vert \Delta t\vert \le \alpha$$
otherwise.
And in most common scenarios,
$$\vert \Delta t \vert \approx \alpha$$
"""
import math
from typing import Dict, Any, Tuple, Optional
import torch
from torch import nn
from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay
class Adam(GenericAdaptiveOptimizer):
"""
## Adam Optimizer
"""
def __init__(self, params,
lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-16,
weight_decay: WeightDecay = WeightDecay(),
defaults: Optional[Dict[str, Any]] = None):
"""
### Initialize the optimizer
* `params` is the list of parameters
* 'lr' is the learning rate $\alpha$
* `betas` is a tuple of ($\beta_1$, $\beta_2$)
* `eps` is $\hat{\epsilon}$
* `weight_decay` is an instance of class `WeightDecay` defined in [__init__.py](index.html)
* `defaults` is a dictionary of default for group values.
This is useful when you want to extend the class `Adam`.
"""
defaults = {} if defaults is None else defaults
defaults.update(weight_decay.defaults())
super().__init__(params, defaults, lr, betas, eps)
self.weight_decay = weight_decay
def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
"""
### Initialize a parameter state
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `param` is the parameter tensor $\theta_{t-1}$
"""
# This is the number of optimizer steps taken on the parameter, $t$
state['step'] = 0
# Exponential moving average of gradients, $m_t$
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values, $v_t$
state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
"""
### Calculate $m_t$ and and $v_t$
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
"""
# Get $\beta_1$ and $\beta_2$
beta1, beta2 = group['betas']
# Get $m_{t-1}$ and $v_{t-1}$
m, v = state['exp_avg'], state['exp_avg_sq']
# In-place calculation of $m_t$
# $$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t$$
m.mul_(beta1).add_(grad, alpha=1 - beta1)
# In-place calculation of $v_t$
# $$v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) \cdot g_t^2$$
v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
return m, v
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
"""
### Get learning-rate
This returns the modified learning rate based on the state.
For *Adam* this is just the specified learning rate for the parameter group,
$\alpha$.
"""
return group['lr']
def adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
m: torch.Tensor, v: torch.Tensor):
"""
### Do the *Adam* parameter update
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `param` is the parameter tensor $\theta_{t-1}$
* `m` and `v` are the uncorrected first and second moments $m_t$ and $v_t$.
This computes the following
\begin{align}
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
\end{align}
Since $\alpha$, $\beta_1$, $\beta_2$ and $\epsilon$ are scalars and others are tensors
we modify this calculation to optimize the computation.
\begin{align}
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot
\frac{m_t / (1-\beta_1^t)}{\sqrt{v_t/(1-\beta_2^t)} + \epsilon} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
\frac{m_t}{\sqrt{v_t} + \hat{\epsilon}} \\
\end{align}
where
$$\hat{\epsilon} = (1-\beta_2^t) \epsilon$$
is what we should specify as the hyper-parameter.
"""
# Get $\beta_1$ and $\beta_2$
beta1, beta2 = group['betas']
# Bias correction term for $\hat{m}_t$, $1 - \beta_1^t$
bias_correction1 = 1 - beta1 ** state['step']
# Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$
bias_correction2 = 1 - beta2 ** state['step']
# $\sqrt{v_t} + \epsilon$
denominator = v.sqrt().add_(group['eps'])
# $\alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
step_size = self.get_lr(state, group) * math.sqrt(bias_correction2) / bias_correction1
# $\theta_t \leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
# \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
param.data.addcdiv_(m, denominator, value=-step_size)
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
"""
### Take an update step for a given parameter tensor
* `state` is the optimizer state of the parameter (tensor)
* `group` stores optimizer attributes of the parameter group
* `grad` is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$
* `param` is the parameter tensor $\theta_{t-1}$
"""
# Calculate weight decay
grad = self.weight_decay(param, grad, group)
# Get $m_t$ and $v_t$
m, v = self.get_mv(state, group, grad)
# Calculate $t$ the number of optimizer steps
state['step'] += 1
# Perform *Adam* update
self.adam_update(state, group, param, m, v)