mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 14:29:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			163 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE html>
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | 
						|
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | 
						|
    <meta name="description" content=""/>
 | 
						|
 | 
						|
    <meta name="twitter:card" content="summary"/>
 | 
						|
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta name="twitter:title" content="Switch Transformer"/>
 | 
						|
    <meta name="twitter:description" content=""/>
 | 
						|
    <meta name="twitter:site" content="@labmlai"/>
 | 
						|
    <meta name="twitter:creator" content="@labmlai"/>
 | 
						|
 | 
						|
    <meta property="og:url" content="https://nn.labml.ai/transformers/switch/readme.html"/>
 | 
						|
    <meta property="og:title" content="Switch Transformer"/>
 | 
						|
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta property="og:site_name" content="LabML Neural Networks"/>
 | 
						|
    <meta property="og:type" content="object"/>
 | 
						|
    <meta property="og:title" content="Switch Transformer"/>
 | 
						|
    <meta property="og:description" content=""/>
 | 
						|
 | 
						|
    <title>Switch Transformer</title>
 | 
						|
    <link rel="shortcut icon" href="/icon.png"/>
 | 
						|
    <link rel="stylesheet" href="../../pylit.css">
 | 
						|
    <link rel="canonical" href="https://nn.labml.ai/transformers/switch/readme.html"/>
 | 
						|
    <!-- Global site tag (gtag.js) - Google Analytics -->
 | 
						|
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | 
						|
    <script>
 | 
						|
        window.dataLayer = window.dataLayer || [];
 | 
						|
 | 
						|
        function gtag() {
 | 
						|
            dataLayer.push(arguments);
 | 
						|
        }
 | 
						|
 | 
						|
        gtag('js', new Date());
 | 
						|
 | 
						|
        gtag('config', 'G-4V3HC8HBLH');
 | 
						|
    </script>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<div id='container'>
 | 
						|
    <div id="background"></div>
 | 
						|
    <div class='section'>
 | 
						|
        <div class='docs'>
 | 
						|
            <p>
 | 
						|
                <a class="parent" href="/">home</a>
 | 
						|
                <a class="parent" href="../index.html">transformers</a>
 | 
						|
                <a class="parent" href="index.html">switch</a>
 | 
						|
            </p>
 | 
						|
            <p>
 | 
						|
 | 
						|
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/switch/readme.md">
 | 
						|
                    <img alt="Github"
 | 
						|
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
                <a href="https://twitter.com/labmlai"
 | 
						|
                   rel="nofollow">
 | 
						|
                    <img alt="Twitter"
 | 
						|
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
            </p>
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
    <div class='section' id='section-0'>
 | 
						|
        <div class='docs'>
 | 
						|
            <div class='section-link'>
 | 
						|
                <a href='#section-0'>#</a>
 | 
						|
            </div>
 | 
						|
            <h1><a href="https://nn.labml.ai/transformers/switch/index.html">Switch Transformer</a></h1>
 | 
						|
<p>This is a miniature <a href="https://pytorch.org">PyTorch</a> implementation of the paper
 | 
						|
<a href="https://papers.labml.ai/paper/2101.03961">Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity</a>.
 | 
						|
Our implementation only has a few million parameters and doesn’t do model parallel distributed training.
 | 
						|
It does single GPU training, but we implement the concept of switching as described in the paper.</p>
 | 
						|
<p>The Switch Transformer uses different parameters for each token by switching among parameters
 | 
						|
based on the token.
 | 
						|
Therefore, only a fraction of parameters are chosen for each token.
 | 
						|
So you can have more parameters but less computational cost.</p>
 | 
						|
<p>The switching happens at the Position-wise Feedforward network (FFN) of each transformer block.
 | 
						|
Position-wise feedforward network consists of two sequentially fully connected layers.
 | 
						|
In switch transformer we have multiple FFNs (multiple experts),
 | 
						|
and we chose which one to use based on a router.
 | 
						|
The output is a set of probabilities for picking a FFN,
 | 
						|
and we pick the one with the highest probability and only evaluate that.
 | 
						|
So essentially the computational cost is the same as having a single FFN.
 | 
						|
In our implementation this doesn’t parallelize well when you have many or large FFNs since it’s all
 | 
						|
happening on a single GPU.
 | 
						|
In a distributed setup you would have each FFN (each very large) on a different device.</p>
 | 
						|
<p>The paper introduces another loss term to balance load among the experts (FFNs) and
 | 
						|
discusses dropping tokens when routing is not balanced.</p>
 | 
						|
<p>Here’s <a href="experiment.html">the training code</a> and a notebook for training a switch transformer on Tiny Shakespeare dataset.</p>
 | 
						|
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/transformers/switch/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
 | 
						|
<a href="https://app.labml.ai/run/c4656c605b9311eba13d0242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
 | 
						|
        </div>
 | 
						|
        <div class='code'>
 | 
						|
            
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
    <div class='footer'>
 | 
						|
        <a href="https://papers.labml.ai">Trending Research Papers</a>
 | 
						|
        <a href="https://labml.ai">labml.ai</a>
 | 
						|
    </div>
 | 
						|
</div>
 | 
						|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | 
						|
</script>
 | 
						|
<!-- MathJax configuration -->
 | 
						|
<script type="text/x-mathjax-config">
 | 
						|
    MathJax.Hub.Config({
 | 
						|
        tex2jax: {
 | 
						|
            inlineMath: [ ['$','$'] ],
 | 
						|
            displayMath: [ ['$$','$$'] ],
 | 
						|
            processEscapes: true,
 | 
						|
            processEnvironments: true
 | 
						|
        },
 | 
						|
        // Center justify equations in code and markdown cells. Elsewhere
 | 
						|
        // we use CSS to left justify single line equations in code cells.
 | 
						|
        displayAlign: 'center',
 | 
						|
        "HTML-CSS": { fonts: ["TeX"] }
 | 
						|
    });
 | 
						|
 | 
						|
</script>
 | 
						|
<script>
 | 
						|
    function handleImages() {
 | 
						|
        var images = document.querySelectorAll('p>img')
 | 
						|
 | 
						|
        console.log(images);
 | 
						|
        for (var i = 0; i < images.length; ++i) {
 | 
						|
            handleImage(images[i])
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    function handleImage(img) {
 | 
						|
        img.parentElement.style.textAlign = 'center'
 | 
						|
 | 
						|
        var modal = document.createElement('div')
 | 
						|
        modal.id = 'modal'
 | 
						|
 | 
						|
        var modalContent = document.createElement('div')
 | 
						|
        modal.appendChild(modalContent)
 | 
						|
 | 
						|
        var modalImage = document.createElement('img')
 | 
						|
        modalContent.appendChild(modalImage)
 | 
						|
 | 
						|
        var span = document.createElement('span')
 | 
						|
        span.classList.add('close')
 | 
						|
        span.textContent = 'x'
 | 
						|
        modal.appendChild(span)
 | 
						|
 | 
						|
        img.onclick = function () {
 | 
						|
            console.log('clicked')
 | 
						|
            document.body.appendChild(modal)
 | 
						|
            modalImage.src = img.src
 | 
						|
        }
 | 
						|
 | 
						|
        span.onclick = function () {
 | 
						|
            document.body.removeChild(modal)
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    handleImages()
 | 
						|
</script>
 | 
						|
</body>
 | 
						|
</html> |