Files
Varuna Jayasiri c4d2e8cd22 docs
2025-07-31 08:48:07 +05:30

255 lines
23 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="optimizer.py"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/helpers/optimizer.html"/>
<meta property="og:title" content="optimizer.py"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="optimizer.py"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="optimizer.py"/>
<meta property="og:description" content=""/>
<title>optimizer.py</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css?v=1">
<link rel="canonical" href="https://nn.labml.ai/helpers/optimizer.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">helpers</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/helpers/optimizer.py" target="_blank">
View code on Github</a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">1</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Tuple</span>
<span class="lineno">2</span>
<span class="lineno">3</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">4</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">tracker</span>
<span class="lineno">5</span>
<span class="lineno">6</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">BaseConfigs</span><span class="p">,</span> <span class="n">option</span><span class="p">,</span> <span class="n">meta_config</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<p> This creates a configurable optimizer.</p>
<p>Arguments: learning_rate (float): Learning rate of the optimizer. Defaults to <code class="highlight"><span></span></code>
0.01<code class="highlight"><span></span></code>
. momentum (float): Momentum of the optimizer. Defaults to <code class="highlight"><span></span></code>
0.5<code class="highlight"><span></span></code>
. parameters: Model parameters to optimize. d_model (int): Embedding size of the model (for Noam optimizer). betas (Tuple<a href="float, float">float, float</a>): Betas for Adam optimizer. Defaults to <code class="highlight"><span></span></code>
(0.9, 0.999)<code class="highlight"><span></span></code>
. eps (float): Epsilon for Adam/RMSProp optimizers. Defaults to <code class="highlight"><span></span></code>
1e-8<code class="highlight"><span></span></code>
. step_factor (int): Step factor for Noam optimizer. Defaults to <code class="highlight"><span></span></code>
1024<code class="highlight"><span></span></code>
.</p>
<p>Also there is a better (more options) implementation in <code class="highlight"><span></span></code>
labml_nn<code class="highlight"><span></span></code>
. <code class="highlight"><span></span><span class="n">We</span> <span class="n">recommend</span> <span class="n">using</span> <span class="n">that</span> <span class="o">&lt;</span><span class="n">https</span><span class="p">:</span><span class="o">//</span><span class="n">nn</span><span class="o">.</span><span class="n">labml</span><span class="o">.</span><span class="n">ai</span><span class="o">/</span><span class="n">optimizers</span><span class="o">/</span><span class="n">configs</span><span class="o">.</span><span class="n">html</span><span class="o">&gt;</span></code>
_.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">9</span><span class="k">class</span> <span class="nc">OptimizerConfigs</span><span class="p">(</span><span class="n">BaseConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">26</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span>
<span class="lineno">27</span> <span class="n">learning_rate</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.01</span>
<span class="lineno">28</span> <span class="n">momentum</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.5</span>
<span class="lineno">29</span> <span class="n">parameters</span><span class="p">:</span> <span class="nb">any</span>
<span class="lineno">30</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span>
<span class="lineno">31</span> <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">)</span>
<span class="lineno">32</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-8</span>
<span class="lineno">33</span> <span class="n">step_factor</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1024</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">35</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">36</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">_primary</span><span class="o">=</span><span class="s1">&#39;optimizer&#39;</span><span class="p">)</span>
<span class="lineno">37</span>
<span class="lineno">38</span>
<span class="lineno">39</span><span class="n">meta_config</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">parameters</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;SGD&#39;</span><span class="p">)</span>
<span class="lineno">43</span><span class="k">def</span> <span class="nf">sgd_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">44</span> <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span>
<span class="lineno">45</span>
<span class="lineno">46</span>
<span class="lineno">47</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;Adam&#39;</span><span class="p">)</span>
<span class="lineno">48</span><span class="k">def</span> <span class="nf">adam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">49</span> <span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">learning_rate</span><span class="p">,</span>
<span class="lineno">50</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
<span class="lineno">51</span>
<span class="lineno">52</span>
<span class="lineno">53</span><span class="k">class</span> <span class="nc">NoamOpt</span><span class="p">:</span>
<span class="lineno">54</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">learning_rate</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">warmup</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">step_factor</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">):</span>
<span class="lineno">55</span> <span class="bp">self</span><span class="o">.</span><span class="n">step_factor</span> <span class="o">=</span> <span class="n">step_factor</span>
<span class="lineno">56</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span> <span class="o">=</span> <span class="n">optimizer</span>
<span class="lineno">57</span> <span class="bp">self</span><span class="o">.</span><span class="n">warmup</span> <span class="o">=</span> <span class="n">warmup</span>
<span class="lineno">58</span> <span class="bp">self</span><span class="o">.</span><span class="n">learning_rate</span> <span class="o">=</span> <span class="n">learning_rate</span>
<span class="lineno">59</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_size</span> <span class="o">=</span> <span class="n">model_size</span>
<span class="lineno">60</span> <span class="bp">self</span><span class="o">.</span><span class="n">_rate</span> <span class="o">=</span> <span class="mi">0</span>
<span class="lineno">61</span>
<span class="lineno">62</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">63</span> <span class="n">rate</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rate</span><span class="p">(</span><span class="n">tracker</span><span class="o">.</span><span class="n">get_global_step</span><span class="p">()</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">step_factor</span><span class="p">)</span>
<span class="lineno">64</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">param_groups</span><span class="p">:</span>
<span class="lineno">65</span> <span class="n">p</span><span class="p">[</span><span class="s1">&#39;lr&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">rate</span>
<span class="lineno">66</span> <span class="bp">self</span><span class="o">.</span><span class="n">_rate</span> <span class="o">=</span> <span class="n">rate</span>
<span class="lineno">67</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
<span class="lineno">68</span>
<span class="lineno">69</span> <span class="k">def</span> <span class="nf">rate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">step</span><span class="p">):</span>
<span class="lineno">70</span> <span class="n">factor</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_size</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="p">)</span> <span class="o">*</span> <span class="nb">min</span><span class="p">(</span><span class="n">step</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="p">),</span> <span class="n">step</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">warmup</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">1.5</span><span class="p">))</span>
<span class="lineno">71</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">learning_rate</span> <span class="o">*</span> <span class="n">factor</span>
<span class="lineno">72</span>
<span class="lineno">73</span> <span class="k">def</span> <span class="nf">zero_grad</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="lineno">74</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
<span class="lineno">75</span>
<span class="lineno">76</span>
<span class="lineno">77</span><span class="nd">@option</span><span class="p">(</span><span class="n">OptimizerConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">,</span> <span class="s1">&#39;Noam&#39;</span><span class="p">)</span>
<span class="lineno">78</span><span class="k">def</span> <span class="nf">noam_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">OptimizerConfigs</span><span class="p">):</span>
<span class="lineno">79</span> <span class="n">optimizer</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">parameters</span><span class="p">,</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">betas</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
<span class="lineno">80</span> <span class="k">return</span> <span class="n">NoamOpt</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2000</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">step_factor</span><span class="p">,</span> <span class="n">optimizer</span><span class="p">)</span>
<span class="lineno">81</span>
<span class="lineno">82</span>
<span class="lineno">83</span><span class="k">def</span> <span class="nf">_test_noam_optimizer</span><span class="p">():</span>
<span class="lineno">84</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="lineno">85</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="lineno">86</span>
<span class="lineno">87</span> <span class="n">opts</span> <span class="o">=</span> <span class="p">[</span><span class="n">NoamOpt</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4000</span><span class="p">,</span> <span class="kc">None</span><span class="p">),</span>
<span class="lineno">88</span> <span class="n">NoamOpt</span><span class="p">(</span><span class="mi">512</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">8000</span><span class="p">,</span> <span class="kc">None</span><span class="p">),</span>
<span class="lineno">89</span> <span class="n">NoamOpt</span><span class="p">(</span><span class="mi">2048</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2000</span><span class="p">,</span> <span class="kc">None</span><span class="p">)]</span>
<span class="lineno">90</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20000</span><span class="p">),</span> <span class="p">[[</span><span class="n">opt</span><span class="o">.</span><span class="n">rate</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">opt</span> <span class="ow">in</span> <span class="n">opts</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20000</span><span class="p">)])</span>
<span class="lineno">91</span> <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">([</span><span class="s2">&quot;512:4000&quot;</span><span class="p">,</span> <span class="s2">&quot;512:8000&quot;</span><span class="p">,</span> <span class="s2">&quot;256:4000&quot;</span><span class="p">])</span>
<span class="lineno">92</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Optimizer&quot;</span><span class="p">)</span>
<span class="lineno">93</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="lineno">94</span>
<span class="lineno">95</span>
<span class="lineno">96</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">97</span> <span class="n">_test_noam_optimizer</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src=../interactive.js?v=1"></script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>