mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 10:48:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			280 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| ---
 | |
| title: Rectified Adam (RAdam) optimizer
 | |
| summary: A simple PyTorch implementation/tutorial of RAdam optimizer.
 | |
| ---
 | |
| 
 | |
| # Rectified Adam (RAdam) optimizer
 | |
| 
 | |
| This implementation is based on
 | |
| [the official implementation](https://github.com/LiyuanLucasLiu/RAdam)
 | |
| of the paper
 | |
| [On the Variance of the Adaptive Learning Rate and Beyond](https://arxiv.org/abs/1908.03265).
 | |
| 
 | |
| We have implemented it as an extension to [our AMSGrad implementation](amsgrad.html)
 | |
| thus requiring only the modifications to be implemented.
 | |
| 
 | |
| Adam optimizer sometimes converges to a bad local optima during the initial stages of the training;
 | |
| especially when training transformers.
 | |
| Researches use warmups to counter this; for the the initial training steps (warm-up stage)
 | |
| they use a low learning rate.
 | |
| This paper identifies the problem to be the high variance of adaptive learning rate
 | |
| during initial stages of training, and counters it using a new rectification term to
 | |
| reduce variance.
 | |
| 
 | |
| The paper also evaluates two variance reduction mechanisms:
 | |
| * **Adam-2k**: Only compute the adaptive learning rate ($v_t$ in [Adam](adam.html)) during the first 2k steps,
 | |
| without changing parameters or calculating momentum ($m_t$).
 | |
| * **Adam-eps**: Adam with large $\epsilon \approx 10^{-4}$.
 | |
| 
 | |
| ## Rectified Adam
 | |
| 
 | |
| Let $\sigma(g_1, ..., g_t)$ and $\psi(g_1, ..., g_t)$ be the functions to calculate
 | |
| momentum and adaptive learning rate.
 | |
| For Adam, they are
 | |
| \begin{align}
 | |
| \sigma(g_1, ..., g_t) &=  \frac{(1 - \beta_1)\sum_{i=1}^t \beta_1^{t-i} g_i}{1 - \beta_1^t} \\
 | |
| \psi(g_1, ..., g_t) &=  \sqrt \frac{1 - \beta_2^t}{(1 - \beta_2)\sum_{i=1}^t \beta_2^{t-i} g_i^2}
 | |
| \end{align}
 | |
| 
 | |
| ### Exponential moving average as simple moving average
 | |
| 
 | |
| The distribution of exponential moving average can be approximated as a simple moving average.
 | |
| \begin{align}
 | |
| p\Bigg(\frac{(1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} g_i^2}{1 - \beta_2^t} \Bigg) \approx
 | |
| p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
 | |
| \end{align}
 | |
| Here we are taking the simple moving average of the last $f(t,\beta_2)$ gradients.
 | |
| $f(t,\beta_2)$ satisfies the following,
 | |
| \begin{align}
 | |
| \frac{(1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot i}{1 - \beta_2^t} =
 | |
| \frac{\sum_{i=1}^{f(t,\beta_2)} (t+1-i)}{f(t,\beta_2)}
 | |
| \end{align}
 | |
| which gives,
 | |
| $$f(t,\beta_2) = \frac{2}{1-\beta_2} - 1 - \frac{2 t \beta_2^t}{1 - \beta_2^t}$$
 | |
| 
 | |
| ### Scaled inverse chi-squared
 | |
| 
 | |
| From above we have
 | |
| $$
 | |
| p\Big( \psi^2(g_1, ..., g_t) \Big) \approx
 | |
| p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
 | |
| $$
 | |
| where $g_i \sim \mathcal{N}(0, \sigma^2)$.
 | |
| Note that $sigma$ here is the standard deviation and different from $\sigma(.)$ for momentum.
 | |
| 
 | |
| [Scaled inverse chi-squared](https://en.wikipedia.org/wiki/Scaled_inverse_chi-squared_distribution)
 | |
| is the distribution of squared inverse of mean of $p$ normal distributions.
 | |
| $$
 | |
| p\Bigg(\frac{\sum_{i=1}^{f(t,\beta_2)} g_{t+1-i}^2}{f(t,\beta_2)} \Bigg)
 | |
| \sim
 | |
| \text{Scale-inv} \mathcal{X}^2(\rho,\frac{1}{\sigma^2})
 | |
| $$
 | |
| where $\rho = f(t,\beta_2)$.
 | |
| 
 | |
| ### Rectification
 | |
| 
 | |
| They prove that variance of $\psi(.)$ decreases with $\rho$ when
 | |
| $\psi^2(.) \sim \text{Scale-inv} \mathcal{X}^2(\rho,\frac{1}{\sigma^2})$.
 | |
| 
 | |
| Therefore the variance is minimized at maximal $\rho$ which is
 | |
| $\rho_{\infty} = \frac{2}{1-\beta_2} - 1$. Let the minimum variance be $C_{\text{var}}$
 | |
| 
 | |
| In order to ensure that the adaptive learning
 | |
| rate $\psi(.)$ has consistent variance, we rectify the variance with $r$
 | |
| \begin{align}
 | |
| r = \sqrt{\frac{C_{\text{var}}}{Var\big[\psi(.)\big]}}
 | |
| \end{align}
 | |
| 
 | |
| ### Approximating $Var[\psi(.)]$
 | |
| 
 | |
| They estimate $Var[\psi(.)] \approx \frac{Var[\psi^2(.)]}{4 \mathbb{E}[\psi^2(.)}$
 | |
| based on first order expansion of $\sqrt{\psi^2(.)}$
 | |
| 🤪 I didn't get how it was derived.
 | |
| 
 | |
| From $\text{Scale-inv} \mathcal{X}^2$ distribution we have,
 | |
| \begin{align}
 | |
| \mathbb{E}\big[\psi^2(.)\big] &= \frac{\rho / \sigma^2}{\rho-2} \\
 | |
| Var\big[\psi^2(.)\big] &= \frac{2 \rho / \sigma^4}{(\rho-2)^2 (\rho - 2)}
 | |
| \end{align}
 | |
| which gives,
 | |
| $$
 | |
| Var[\psi(.)] \approx \frac{\rho}{2(\rho-2)(\rho-4)\sigma^2}
 | |
| $$
 | |
| 
 | |
| ### Rectification term
 | |
| 
 | |
| We have
 | |
| \begin{align}
 | |
| r &= \sqrt{\frac{C_{\text{var}}}{Var\big[\psi(.)\big]}} \\
 | |
| Var[\psi(.)] &\approx \frac{\rho}{2(\rho-2)(\rho-4)\sigma^2}
 | |
| \end{align}
 | |
| 
 | |
| where $C_{\text{var}}$ is $Var\big[\psi(.)\big]$ for $\rho_\infty$.
 | |
| Lt $\rho$ and step $t$ be $\rho_t$, and $r_t$ be the rectification term
 | |
| at step $t$.
 | |
| 
 | |
| \begin{align}
 | |
| C_{\text{var}} &\approx \frac{\rho_\infty}{2(\rho_\infty-2)(\rho_\infty-4)\sigma^2} \\
 | |
| Var[\psi(g_1,...,g_t)] &\approx \frac{\rho_t}{2(\rho_t-2)(\rho_t-4)\sigma^2}
 | |
| \end{align}
 | |
| 
 | |
| This gives,
 | |
| \begin{align}
 | |
| r_t &= \sqrt{\frac{(\rho_t-2)(\rho_t-4)\rho_\infty}{(\rho_\infty-2)(\rho_\infty-4)\rho_t}}
 | |
| \end{align}
 | |
| """
 | |
| 
 | |
| import math
 | |
| from typing import Dict, Optional
 | |
| 
 | |
| import torch
 | |
| 
 | |
| from labml_nn.optimizers import WeightDecay
 | |
| from labml_nn.optimizers.amsgrad import AMSGrad
 | |
| 
 | |
| 
 | |
| class RAdam(AMSGrad):
 | |
|     """
 | |
|     ## Rectified Adam Optimizer
 | |
| 
 | |
|     This class extends from AMSAdam optimizer defined in [`amsadam.py`](amsadam.html).
 | |
|     """
 | |
| 
 | |
|     def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
 | |
|                  weight_decay: WeightDecay = WeightDecay(),
 | |
|                  optimized_update: bool = True,
 | |
|                  amsgrad=False,
 | |
|                  degenerated_to_sgd=True, defaults=None):
 | |
|         """
 | |
|         ### Initialize the optimizer
 | |
| 
 | |
|         * `params` is the list of parameters
 | |
|         * `lr` is the learning rate $\alpha$
 | |
|         * `betas` is a tuple of ($\beta_1$, $\beta_2$)
 | |
|         * `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
 | |
|         * `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
 | |
|         * 'optimized_update' is a flag whether to optimize the bias correction of the second moment
 | |
|           by doing it after adding $\epsilon$
 | |
|         * `amsgrad` is a flag indicating whether to use AMSGrad or fallback to plain Adam
 | |
|         * `degenerate_to_sgd` whether to use sgd when the rectification term $r_t is intractable.
 | |
|         * `defaults` is a dictionary of default for group values.
 | |
|          This is useful when you want to extend the class `RAdam`.
 | |
|         """
 | |
|         self.degenerated_to_sgd = degenerated_to_sgd
 | |
|         super().__init__(params, lr, betas, eps, weight_decay, optimized_update, amsgrad, defaults)
 | |
| 
 | |
|     def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
 | |
|         """
 | |
|         ### Take an update step for a given parameter tensor
 | |
| 
 | |
|         * `state` is the optimizer state of the parameter (tensor)
 | |
|         * `group` stores optimizer attributes of the parameter group
 | |
|         * `grad` is the current gradient tensor  $g_t$ for the parameter $\theta_{t-1}$
 | |
|         * `param` is the parameter tensor $\theta_{t-1}$
 | |
|         """
 | |
| 
 | |
|         # Calculate weight decay
 | |
|         grad = self.weight_decay(param, grad, group)
 | |
| 
 | |
|         # Get $m_t$ and $v_t$; i.e. $\sigma(.)$ and $\psi(.)$ without bias correction
 | |
|         m, v = self.get_mv(state, group, grad)
 | |
| 
 | |
|         # Calculate $t$ the number of optimizer steps
 | |
|         state['step'] += 1
 | |
| 
 | |
|         # Perform *RAdam* update
 | |
|         self.r_adam_update(state, group, param, m, v)
 | |
| 
 | |
|     @staticmethod
 | |
|     def calc_rectification_term(beta2: float, step: int) -> Optional[float]:
 | |
|         """
 | |
|         ### Calculate rectification term $r_t$
 | |
|         """
 | |
| 
 | |
|         # $\beta_2^t$
 | |
|         beta2_t = beta2 ** step
 | |
|         # $$\rho_\infty = \frac{2}{1 - \beta_2} - 1$$
 | |
|         rho_inf = 2 / (1 - beta2) - 1
 | |
|         # $$\rho_t = \frac{2}{1-\beta_2} - 1 - \frac{2 t \beta_2^t}{1-\beta_2^t}$$
 | |
|         rho = rho_inf - 2 * step * beta2_t / (1 - beta2_t)
 | |
| 
 | |
|         # $r_t$ is tractable when $\rho_t >= 4$.
 | |
|         # We are being a little more conservative since it's an approximated value
 | |
|         if rho >= 5:
 | |
|             # $$r_t = \sqrt{\frac{(\rho_t-2)(\rho_t-4)\rho_\infty}{(\rho_\infty-2)(\rho_\infty-4)\rho_t}}$$
 | |
|             r2 = (rho - 4) / (rho_inf - 4) * (rho - 2) / rho * rho_inf / (rho_inf - 2)
 | |
|             return math.sqrt(r2)
 | |
|         else:
 | |
|             return None
 | |
| 
 | |
|     def r_adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
 | |
|                       m: torch.Tensor, v: torch.Tensor):
 | |
|         """
 | |
|         ### Do the *RAdam* parameter update
 | |
| 
 | |
|         * `state` is the optimizer state of the parameter (tensor)
 | |
|         * `group` stores optimizer attributes of the parameter group
 | |
|         * `param` is the parameter tensor $\theta_{t-1}$
 | |
|         * `m` and `v` are the uncorrected first and second moments $m_t$ and $v_t$;
 | |
|           i.e. $\sigma(.)$ and $\psi(.)$ without bias correction
 | |
|         """
 | |
| 
 | |
|         # Get $\beta_1$ and $\beta_2$
 | |
|         beta1, beta2 = group['betas']
 | |
|         # Bias correction term for $\hat{m}_t$, $1 - \beta_1^t$
 | |
|         bias_correction1 = 1 - beta1 ** state['step']
 | |
|         # Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$
 | |
|         bias_correction2 = 1 - beta2 ** state['step']
 | |
| 
 | |
|         r = self.calc_rectification_term(beta2, state['step'])
 | |
| 
 | |
|         # If $r_t$ is intractable
 | |
|         if r is not None:
 | |
|             # Whether to optimize the computation by combining scalar computations
 | |
|             if self.optimized_update:
 | |
|                 # Denominator $\sqrt{v_t} + \hat{\epsilon}$
 | |
|                 denominator = v.sqrt().add_(group['eps'])
 | |
|                 # Step size $\alpha \sqrt{r_t} * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
 | |
|                 step_size = self.get_lr(state, group) * math.sqrt(bias_correction2) * r / bias_correction1
 | |
|                 # Update parameters $\theta_t \leftarrow \theta_{t-1} - \alpha \sqrt{r_t} \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
 | |
|                 #  \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
 | |
|                 param.data.addcdiv_(m, denominator, value=-step_size)
 | |
|             # Computation without optimization
 | |
|             else:
 | |
|                 # Denominator  $\frac{\sqrt{v_t}}{\sqrt{1-\beta_2^t}} + \epsilon$
 | |
|                 denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
 | |
|                 # Step size $\frac{\alpha \sqrt{r_t}}{1-\beta_1^t}$
 | |
|                 step_size = self.get_lr(state, group) * r / bias_correction1
 | |
|                 # Update parameters $\theta_t \leftarrow \theta_{t-1} - \alpha \sqrt{r_t} \cdot
 | |
|                 # \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$
 | |
|                 param.data.addcdiv_(m, denominator, value=-step_size)
 | |
| 
 | |
|         # If $r_t$ is intractable do a SGD with momentum
 | |
|         elif self.degenerated_to_sgd:
 | |
|             # Step size $\frac{\alpha}{1-\beta_1^t}$
 | |
|             step_size = self.get_lr(state, group) / bias_correction1
 | |
|             # Update parameters
 | |
|             # $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t$
 | |
|             param.data.add_(m, alpha=-step_size)
 | |
| 
 | |
| 
 | |
| def _test_rectification_term():
 | |
|     """
 | |
|     ### Plot $r_t$ against $t$ for various $\beta_2$
 | |
| 
 | |
|     
 | |
|     """
 | |
|     import matplotlib.pyplot as plt
 | |
|     import numpy as np
 | |
| 
 | |
|     beta2 = [0.9999, 0.999, 0.99, 0.9, 0.8, 0.6, 0.5]
 | |
|     plt.plot(np.arange(1, 5_000), [[RAdam.calc_rectification_term(b, i) for b in beta2] for i in range(1, 5_000)])
 | |
|     plt.legend(beta2)
 | |
|     plt.title("Optimizer")
 | |
|     plt.show()
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     _test_rectification_term()
 | 
