Files
Varuna Jayasiri 8d1b6ba010 translations
2022-08-30 16:28:56 +05:30
..
2022-08-30 16:28:56 +05:30
2022-08-30 16:28:56 +05:30
2022-08-30 16:28:56 +05:30
2022-08-30 16:28:56 +05:30

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="zh">
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>

    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta name="twitter:title" content="在神经网络中提炼知识"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>

    <meta property="og:url" content="https://nn.labml.ai/distillation/readme.html"/>
    <meta property="og:title" content="在神经网络中提炼知识"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta property="og:site_name" content="在神经网络中提炼知识"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="在神经网络中提炼知识"/>
    <meta property="og:description" content=""/>

    <title>在神经网络中提炼知识</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../pylit.css?v=1">
    <link rel="canonical" href="https://nn.labml.ai/distillation/readme.html"/>
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">

    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];

        function gtag() {
            dataLayer.push(arguments);
        }

        gtag('js', new Date());

        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="index.html">distillation</a>
            </p>
            <p>
                <a href="https://github.com/sponsors/labmlai" target="_blank">
                    <img alt="Sponsor"
                         src="https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86"
                         style="max-width:100%;"/></a>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/distillation/readme.md" target="_blank">
                    View code on Github</a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
        <div class='docs'>
            <div class='section-link'>
                <a href='#section-0'>#</a>
            </div>
            <h1><a href="https://nn.labml.ai/distillation/index.html">在神经网络中提炼知识</a></h1>
<p>这是论文《<a href="https://papers.labml.ai/paper/1503.02531">在神经网络中提炼知识</a>》的 <a href="https://pytorch.org">PyTorch</a> 实现/教程。</p>
<p>这是一种使用经过训练的大型网络中的知识来训练小型网络的方法;即从大型网络中提取知识。</p>
当@@ <p>直接在数据和标签上训练时,具有正则化或模型集合(使用 dropout的大型模型比小型模型的概化效果更好。但是在大型模型的帮助下可以训练一个小模型以更好地进行概括。较小的模型在生产环境中会更好更快、更少的计算、更少的内存。</p>
<p>训练模型的输出概率比标签提供的信息更多,因为它也将非零概率分配给不正确的类。这些概率告诉我们,样本有可能属于某些类别。例如,在对数字进行分类时,当给出数字 <em>7</em> 的图像时,广义模型将给出 7 的概率很高,为 2 提供一个小但非零的概率,同时为其他数字分配几乎为零的概率。蒸馏利用这些信息来更好地训练小型模型。</p>
<p><a href="https://app.labml.ai/run/d6182e2adaf011eb927c91a2a1710932"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen"></a></p>

        </div>
        <div class='code'>
            
        </div>
    </div>
    <div class='footer'>
        <a href="https://papers.labml.ai">Trending Research Papers</a>
        <a href="https://labml.ai">labml.ai</a>
    </div>
</div>
<script src=../interactive.js?v=1"></script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')

        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }

    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'

        var modal = document.createElement('div')
        modal.id = 'modal'

        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)

        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)

        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)

        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }

        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }

    handleImages()
</script>
</body>
</html>