Files
Varuna Jayasiri f1fe7087f1 footer
2021-08-19 15:21:18 +05:30

283 lines
14 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="This creates data for Parity Task from the paper Adaptive Computation Time for Recurrent Neural Networks"/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Parity Task"/>
<meta name="twitter:description" content="This creates data for Parity Task from the paper Adaptive Computation Time for Recurrent Neural Networks"/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/adaptive_computation/parity.html"/>
<meta property="og:title" content="Parity Task"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Parity Task"/>
<meta property="og:description" content="This creates data for Parity Task from the paper Adaptive Computation Time for Recurrent Neural Networks"/>
<title>Parity Task</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/adaptive_computation/parity.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">adaptive_computation</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/adaptive_computation/parity.py">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Parity Task</h1>
<p>This creates data for Parity Task from the paper
<a href="https://papers.labml.ai/paper/1603.08983">Adaptive Computation Time for Recurrent Neural Networks</a>.</p>
<p>The input of the parity task is a vector with $0$&rsquo;s $1$&rsquo;s and $-1$&rsquo;s.
The output is the parity of $1$&rsquo;s - one if there is an odd number of $1$&rsquo;s and zero otherwise.
The input is generated by making a random number of elements in the vector either $1$ or $-1$&rsquo;s.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">19</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Tuple</span>
<span class="lineno">20</span>
<span class="lineno">21</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">22</span><span class="kn">from</span> <span class="nn">torch.utils.data</span> <span class="kn">import</span> <span class="n">Dataset</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h3>Parity dataset</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">25</span><span class="k">class</span> <span class="nc">ParityDataset</span><span class="p">(</span><span class="n">Dataset</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<ul>
<li><code>n_samples</code> is the number of samples</li>
<li><code>n_elems</code> is the number of elements in the input vector</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">30</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n_elems</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">64</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">35</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_samples</span> <span class="o">=</span> <span class="n">n_samples</span>
<span class="lineno">36</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_elems</span> <span class="o">=</span> <span class="n">n_elems</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Size of the dataset</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">38</span> <span class="k">def</span> <span class="fm">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_samples</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Generate a sample</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">44</span> <span class="k">def</span> <span class="fm">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">idx</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]:</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Empty vector</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">50</span> <span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">n_elems</span><span class="p">,))</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Number of non-zero elements - a random number between $1$ and total number of elements</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">n_non_zero</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_elems</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="p">(</span><span class="mi">1</span><span class="p">,))</span><span class="o">.</span><span class="n">item</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Fill non-zero elements with $1$&rsquo;s and $-1$&rsquo;s</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span> <span class="n">x</span><span class="p">[:</span><span class="n">n_non_zero</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="p">(</span><span class="n">n_non_zero</span><span class="p">,))</span> <span class="o">*</span> <span class="mi">2</span> <span class="o">-</span> <span class="mi">1</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Randomly permute the elements</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">56</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">randperm</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_elems</span><span class="p">)]</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>The parity</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">59</span> <span class="n">y</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">==</span> <span class="mf">1.</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span> <span class="o">%</span> <span class="mi">2</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">62</span> <span class="k">return</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>