Files
Varuna Jayasiri 6b4b9b2e39 titles
2020-10-23 15:06:55 +05:30

117 lines
3.6 KiB
Python

"""
# Deep Convolutional Generative Adversarial Networks (DCGAN)
This is an implementation of paper
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434).
This implementation is based on the [PyTorch DCGAN Tutorial](https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html).
"""
import torch.nn as nn
from labml import experiment
from labml.configs import calculate
from labml_helpers.module import Module
from labml_nn.gan.simple_mnist_experiment import Configs
class Generator(Module):
"""
### Convolutional Generator Network
This is similar to the de-convolutional network used for CelebA faces,
but modified for MNIST images.
<img src="https://pytorch.org/tutorials/_images/dcgan_generator.png" style="max-width:90%" />
"""
def __init__(self):
super().__init__()
# The input is $1 \times 1$ with 100 channels
self.layers = nn.Sequential(
# This gives $3 \times 3$ output
nn.ConvTranspose2d(100, 1024, 3, 1, 0, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(True),
# This gives $7 \times 7$
nn.ConvTranspose2d(1024, 512, 3, 2, 0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
# This give $14 \times 14$
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
# This gives $28 \times 28$
nn.ConvTranspose2d(256, 1, 4, 2, 1, bias=False),
nn.Tanh()
)
self.apply(_weights_init)
def __call__(self, x):
# Change from shape `[batch_size, 100]` to `[batch_size, 100, 1, 1]`
x = x.unsqueeze(-1).unsqueeze(-1)
x = self.layers(x)
return x
class Discriminator(Module):
"""
### Convolutional Discriminator Network
"""
def __init__(self):
super().__init__()
# The input is $28 \times 28$ with one channel
self.layers = nn.Sequential(
# This gives $14 \times 14$
nn.Conv2d(1, 256, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# This gives $7 \times 7$
nn.Conv2d(256, 512, 4, 2, 1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
# This gives $3 \times 3$
nn.Conv2d(512, 1024, 3, 2, 0, bias=False),
nn.BatchNorm2d(1024),
nn.LeakyReLU(0.2, inplace=True),
# This gives $1 \times 1$
nn.Conv2d(1024, 1, 3, 1, 0, bias=False),
)
self.apply(_weights_init)
def forward(self, x):
x = self.layers(x)
return x.view(x.shape[0], -1)
def _weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
# We import the [simple gan experiment]((simple_mnist_experiment.html) and change the
# generator and discriminator networks
calculate(Configs.generator, 'cnn', lambda c: Generator().to(c.device))
calculate(Configs.discriminator, 'cnn', lambda c: Discriminator().to(c.device))
def main():
conf = Configs()
experiment.create(name='mnist_dcgan', comment='test')
experiment.configs(conf,
{'discriminator': 'cnn',
'generator': 'cnn',
'label_smoothing': 0.01},
'run')
with experiment.start():
conf.run()
if __name__ == '__main__':
main()