mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 14:29:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			174 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE html>
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | 
						|
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | 
						|
    <meta name="description" content=""/>
 | 
						|
 | 
						|
    <meta name="twitter:card" content="summary"/>
 | 
						|
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta name="twitter:title" content="LabML Neural Networks"/>
 | 
						|
    <meta name="twitter:description" content=""/>
 | 
						|
    <meta name="twitter:site" content="@vpj"/>
 | 
						|
    <meta name="twitter:creator" content="@vpj"/>
 | 
						|
 | 
						|
    <meta property="og:url" content="https://lab-ml.com/index.html"/>
 | 
						|
    <meta property="og:title" content="LabML Neural Networks"/>
 | 
						|
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | 
						|
    <meta property="og:site_name" content="LabML Neural Networks"/>
 | 
						|
    <meta property="og:type" content="object"/>
 | 
						|
    <meta property="og:title" content="LabML Neural Networks"/>
 | 
						|
    <meta property="og:description" content=""/>
 | 
						|
 | 
						|
    <title>LabML Neural Networks</title>
 | 
						|
    <link rel="stylesheet" href="./pylit.css">
 | 
						|
    <link rel="canonical" href="https://lab-ml.com/index.html"/>
 | 
						|
    <!-- Global site tag (gtag.js) - Google Analytics -->
 | 
						|
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | 
						|
    <script>
 | 
						|
        window.dataLayer = window.dataLayer || [];
 | 
						|
 | 
						|
        function gtag() {
 | 
						|
            dataLayer.push(arguments);
 | 
						|
        }
 | 
						|
 | 
						|
        gtag('js', new Date());
 | 
						|
 | 
						|
        gtag('config', 'G-4V3HC8HBLH');
 | 
						|
    </script>
 | 
						|
</head>
 | 
						|
<body>
 | 
						|
<div id='container'>
 | 
						|
    <div id="background"></div>
 | 
						|
    <div class='section'>
 | 
						|
        <div class='docs'>
 | 
						|
            <p>
 | 
						|
                <a class="parent" href="/">home</a>
 | 
						|
            </p>
 | 
						|
            <p>
 | 
						|
 | 
						|
                <a href="https://github.com/lab-ml/labml_nn/tree/master/__init__.py">
 | 
						|
                    <img alt="Github"
 | 
						|
                         src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
                <a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
 | 
						|
                   rel="nofollow">
 | 
						|
                    <img alt="Join Slact"
 | 
						|
                         src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
                <a href="https://twitter.com/labmlai"
 | 
						|
                   rel="nofollow">
 | 
						|
                    <img alt="Twitter"
 | 
						|
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | 
						|
                         style="max-width:100%;"/></a>
 | 
						|
            </p>
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
    <div class='section' id='section-0'>
 | 
						|
        <div class='docs doc-strings'>
 | 
						|
                <div class='section-link'>
 | 
						|
                    <a href='#section-0'>#</a>
 | 
						|
                </div>
 | 
						|
                <h1><a href="https://lab-ml.com/labml_nn/index.html">LabML Neural Networks</a></h1>
 | 
						|
<p>This is a collection of simple PyTorch implementations of
 | 
						|
neural networks and related algorithms.
 | 
						|
<a href="https://github.com/lab-ml/nn">These implementations</a> are documented with explanations,
 | 
						|
and the <a href="https://lab-ml.com/labml_nn/index.html">website</a>
 | 
						|
renders these as side-by-side formatted notes.
 | 
						|
We believe these would help you understand these algorithms better.</p>
 | 
						|
<p>We are actively maintaining this repo and adding new
 | 
						|
implementations.</p>
 | 
						|
<h2>Modules</h2>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/transformers">Transformers</a></h4>
 | 
						|
<p><a href="https://lab-ml.com/labml_nn/transformers">Transformers module</a>
 | 
						|
contains implementations for
 | 
						|
<a href="https://lab-ml.com/labml_nn/transformers/mha.html">multi-headed attention</a>
 | 
						|
and
 | 
						|
<a href="https://lab-ml.com/labml_nn/transformers/relative_mha.html">relative multi-headed attention</a>.</p>
 | 
						|
<ul>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/transformers/gpt">GPT Architecture</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/transformers/knn">kNN-LM: Generalization through Memorization</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/transformers/feedback">Feedback Transformer</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/transformers/switch">Switch Transformer</a></li>
 | 
						|
</ul>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/recurrent_highway_networks">Recurrent Highway Networks</a></h4>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/lstm">LSTM</a></h4>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/hypernetworks/hyper_lstm.html">HyperNetworks - HyperLSTM</a></h4>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/capsule_networks/">Capsule Networks</a></h4>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/gan/">Generative Adversarial Networks</a></h4>
 | 
						|
<ul>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/gan/simple_mnist_experiment.html">GAN with a multi-layer perceptron</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/gan/dcgan.html">GAN with deep convolutional network</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/gan/cycle_gan.html">Cycle GAN</a></li>
 | 
						|
</ul>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/sketch_rnn/">Sketch RNN</a></h4>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/rl/">Reinforcement Learning</a></h4>
 | 
						|
<ul>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/rl/ppo/">Proximal Policy Optimization</a> with
 | 
						|
 <a href="https://lab-ml.com/labml_nn/rl/ppo/gae.html">Generalized Advantage Estimation</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/rl/dqn/">Deep Q Networks</a> with
 | 
						|
 with <a href="https://lab-ml.com/labml_nn/rl/dqn/model.html">Dueling Network</a>,
 | 
						|
 <a href="https://lab-ml.com/labml_nn/rl/dqn/replay_buffer.html">Prioritized Replay</a>
 | 
						|
 and Double Q Network.</li>
 | 
						|
</ul>
 | 
						|
<h4>✨ <a href="https://lab-ml.com/labml_nn/optimizers/">Optimizers</a></h4>
 | 
						|
<ul>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/optimizers/adam.html">Adam</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/optimizers/amsgrad.html">AMSGrad</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/optimizers/adam_warmup.html">Adam Optimizer with warmup</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/optimizers/noam.html">Noam Optimizer</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/optimizers/radam.html">Rectified Adam Optimizer</a></li>
 | 
						|
<li><a href="https://lab-ml.com/labml_nn/optimizers/ada_belief.html">AdaBelief Optimizer</a></li>
 | 
						|
</ul>
 | 
						|
<h3>Installation</h3>
 | 
						|
<pre><code class="bash">pip install labml_nn
 | 
						|
</code></pre>
 | 
						|
 | 
						|
<h3>Citing LabML</h3>
 | 
						|
<p>If you use LabML for academic research, please cite the library using the following BibTeX entry.</p>
 | 
						|
<pre><code class="bibtex">@misc{labml,
 | 
						|
 author = {Varuna Jayasiri, Nipun Wijerathne},
 | 
						|
 title = {LabML: A library to organize machine learning experiments},
 | 
						|
 year = {2020},
 | 
						|
 url = {https://lab-ml.com/},
 | 
						|
}
 | 
						|
</code></pre>
 | 
						|
            </div>
 | 
						|
            <div class='code'>
 | 
						|
                <div class="highlight"><pre></pre></div>
 | 
						|
            </div>
 | 
						|
        </div>
 | 
						|
    </div>
 | 
						|
</div>
 | 
						|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
 | 
						|
</script>
 | 
						|
<!-- MathJax configuration -->
 | 
						|
<script type="text/x-mathjax-config">
 | 
						|
    MathJax.Hub.Config({
 | 
						|
        tex2jax: {
 | 
						|
            inlineMath: [ ['$','$'] ],
 | 
						|
            displayMath: [ ['$$','$$'] ],
 | 
						|
            processEscapes: true,
 | 
						|
            processEnvironments: true
 | 
						|
        },
 | 
						|
        // Center justify equations in code and markdown cells. Elsewhere
 | 
						|
        // we use CSS to left justify single line equations in code cells.
 | 
						|
        displayAlign: 'center',
 | 
						|
        "HTML-CSS": { fonts: ["TeX"] }
 | 
						|
    });
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
</script>
 | 
						|
</body>
 | 
						|
</html> |