Files
2021-10-02 19:01:32 +05:30

244 lines
5.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "AYV_dMVDxyc2"
},
"source": [
"[![Github](https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social)](https://github.com/labmlai/annotated_deep_learning_paper_implementations)\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/rl/dqn/experiment.ipynb) \n",
"\n",
"## Deep Q Networks (DQN)\n",
"\n",
"This is an experiment training an agent to play Atari Breakout game using Deep Q Networks (DQN)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AahG_i2y5tY9"
},
"source": [
"Install the `labml-nn` package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZCzmCrAIVg0L",
"outputId": "6c416266-1e99-4e60-a665-06ff9fba22a6"
},
"outputs": [],
"source": [
"!pip install labml-nn"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3-G5kplRFmsO"
},
"source": [
"Add Atari ROMs (Doesn't work without this in Google Colab)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SByhklD1FlSj",
"outputId": "74075a5e-ec1c-43dc-8859-8f7c3b3b8402"
},
"outputs": [],
"source": [
"! wget http://www.atarimania.com/roms/Roms.rar\n",
"! mkdir /content/ROM/\n",
"! unrar e /content/Roms.rar /content/ROM/\n",
"! python -m atari_py.import_roms /content/ROM/"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SE2VUQ6L5zxI"
},
"source": [
"Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0hJXx_g0wS2C"
},
"outputs": [],
"source": [
"from labml import experiment\n",
"from labml.configs import FloatDynamicHyperParam\n",
"from labml_nn.rl.dqn.experiment import Trainer"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Lpggo0wM6qb-"
},
"source": [
"Create an experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "bFcr9k-l4cAg"
},
"outputs": [],
"source": [
"experiment.create(name=\"dqn\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Hw6uVl1_GaPv"
},
"source": [
"### Configurations\n",
"\n",
"`FloatDynamicHyperParam` is a dynamic hyper-parameter\n",
"that you can change while the experiment is running."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 17
},
"id": "L8bUtLD6GksC",
"outputId": "c7d4efe7-490e-4153-e691-ca31df1e1275"
},
"outputs": [],
"source": [
"configs = {\n",
" # Number of updates\n",
" 'updates': 1_000_000,\n",
" # Number of epochs to train the model with sampled data.\n",
" 'epochs': 8,\n",
" # Number of worker processes\n",
" 'n_workers': 8,\n",
" # Number of steps to run on each process for a single update\n",
" 'worker_steps': 4,\n",
" # Mini batch size\n",
" 'mini_batch_size': 32,\n",
" # Target model updating interval\n",
" 'update_target_model': 250,\n",
" # Learning rate.\n",
" 'learning_rate': FloatDynamicHyperParam(1e-4, (0, 1e-3)),\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Set experiment configurations"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"experiment.configs(configs)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qYQCFt_JYsjd"
},
"source": [
"Create trainer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8LB7XVViYuPG"
},
"outputs": [],
"source": [
"trainer = Trainer(**configs)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KJZRf8527GxL"
},
"source": [
"Start the experiment and run the training loop."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 520
},
"id": "aIAWo7Fw5DR8",
"outputId": "f2bca844-662d-4bfb-a295-d8529f538eaa"
},
"outputs": [],
"source": [
"with experiment.start():\n",
" trainer.run_training_loop()"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Deep Q Networks (DQN)",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}