mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 02:39:16 +08:00 
			
		
		
		
	<!DOCTYPE html>
<html lang="zh">
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>
    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
    <meta name="twitter:title" content="屏蔽语言模型 (MLM)"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>
    <meta property="og:url" content="https://nn.labml.ai/transformers/mlm/readme.html"/>
    <meta property="og:title" content="屏蔽语言模型 (MLM)"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
    <meta property="og:site_name" content="屏蔽语言模型 (MLM)"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="屏蔽语言模型 (MLM)"/>
    <meta property="og:description" content=""/>
    <title>屏蔽语言模型 (MLM)</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../../pylit.css?v=1">
    <link rel="canonical" href="https://nn.labml.ai/transformers/mlm/readme.html"/>
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];
        function gtag() {
            dataLayer.push(arguments);
        }
        gtag('js', new Date());
        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="../index.html">transformers</a>
                <a class="parent" href="index.html">mlm</a>
            </p>
            <p>
                <a href="https://github.com/sponsors/labmlai" target="_blank">
                    <img alt="Sponsor"
                         src="https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86"
                         style="max-width:100%;"/></a>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
            <p>
                <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/mlm/readme.md" target="_blank">
                    View code on Github</a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
        <div class='docs'>
            <div class='section-link'>
                <a href='#section-0'>#</a>
            </div>
            <h1><a href="https://nn.labml.ai/transformers/mlm/index.html">屏蔽语言模型 (MLM)</a></h1>
<p>这是掩码语言模型(MLM)的 <a href="https://pytorch.org">PyTorch</a> 实现,用于预训练《BERT<a href="https://papers.labml.ai/paper/1810.04805">:用于语言理解的深度双向变换器的预训练》一文中介绍的BER</a> T模型。</p>
<h2>BERT 预训练</h2>
<p>BERT 模型是一种变压器模型。本文使用传销和下一句预测对模型进行了预训练。我们在这里只实现了传销。</p>
<h3>下一句话预测</h3>
<p>在<em>下一个句子预测</em>中,模型会给出两个句子,<code  class="highlight"><span></span><span class="n">A</span></code>
<code  class="highlight"><span></span><span class="n">B</span></code>
然后模型做出二进制预测,无论后面的句子<code  class="highlight"><span></span><span class="n">B</span></code>
是否<code  class="highlight"><span></span><span class="n">A</span></code>
在实际的文本中。该模型有 50% 的时间是实际的句子对,50% 的时间是随机句子对。此分类是在应用 MLM 时完成的。<em>我们还没有在这里实现这一点。</em></p>
<h2>蒙面 LM</h2>
<p>这会随机掩盖一定百分比的令牌,并训练模型以预测被掩盖的令牌。他们通过用特殊<strong>令牌替换15%的代<code  class="highlight"><span></span><span class="p">[</span><span class="n">MASK</span><span class="p">]</span></code>
币来掩盖</strong>它们。</p>
<p>损失仅在预测屏蔽令牌时计算。这会在微调和实际使用期间造成问题,因为当时没有<code  class="highlight"><span></span><span class="p">[</span><span class="n">MASK</span><span class="p">]</span></code>
令牌。因此,我们可能无法得到任何有意义的表示。</p>
<p>为了克服这个问题,<strong>10%的被掩盖的令牌被替换为原始令牌</strong>,另外 <strong>10%的蒙面令牌被随机令牌替换</strong>。这将训练模型以提供有关实际令牌的表示,无论该位置的输入令牌是否为 a<code  class="highlight"><span></span><span class="p">[</span><span class="n">MASK</span><span class="p">]</span></code>
。用随机令牌替换会使它给出一个包含来自上下文信息的表示;因为它必须使用上下文来修复随机替换的标记。</p>
<h2>训练</h2>
<p>MLM 比自回归模型更难训练,因为它们的训练信号较小。也就是说,每个样本中只有一小部分预测是训练的。</p>
<p>另一个问题是,由于模型是双向的,因此任何令牌都可以看到任何其他令牌。这使得 “信用分配” 变得更加困难。假设你有角色等级模型试图预测<code  class="highlight"><span></span><span class="n">home</span> <span class="o">*</span><span class="n">s</span> <span class="n">where</span> <span class="n">i</span> <span class="n">want</span> <span class="n">to</span> <span class="n">be</span></code>
。至少在训练的早期阶段,很难弄清楚为什么要替换<code  class="highlight"><span></span><span class="n">i</span></code>
,可能是整句话中的任何东西。<code  class="highlight"><span></span><span class="o">*</span></code>
同时,在自回归环境中,模型只需要<code  class="highlight"><span></span><span class="n">h</span></code>
用来预测<code  class="highlight"><span></span><span class="n">o</span></code>
<code  class="highlight"><span></span><span class="n">e</span></code>
和<code  class="highlight"><span></span><span class="n">hom</span></code>
预测等等。因此,该模型最初将首先使用较短的上下文进行预测,然后再学习使用较长的上下文。由于 MLM 有这个问题,如果你一开始使用较小的序列长度,然后再使用更长的序列长度,那么训练速度要快得多。</p>
<p>下面是一个简单<a href="https://nn.labml.ai/transformers/mlm/experiment.html">的 MLM 模型的训练代码</a>。</p>
<p><a href="https://app.labml.ai/run/3a6d22b6c67111ebb03d6764d13a38d1"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen"></a></p>
        </div>
        <div class='code'>
            
        </div>
    </div>
    <div class='footer'>
        <a href="https://papers.labml.ai">Trending Research Papers</a>
        <a href="https://labml.ai">labml.ai</a>
    </div>
</div>
<script src=../../interactive.js?v=1"></script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')
        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }
    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'
        var modal = document.createElement('div')
        modal.id = 'modal'
        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)
        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)
        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)
        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }
        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }
    handleImages()
</script>
</body>
</html>
			
		