mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-01 03:43:09 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			344 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			344 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html>
 | ||
| <html lang="zh">
 | ||
| <head>
 | ||
|     <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
 | ||
|     <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 | ||
|     <meta name="description" content="深度问网络 (DQN) 神经网络模型的实现。"/>
 | ||
| 
 | ||
|     <meta name="twitter:card" content="summary"/>
 | ||
|     <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | ||
|     <meta name="twitter:title" content="深度问网络 (DQN) 模型"/>
 | ||
|     <meta name="twitter:description" content="深度问网络 (DQN) 神经网络模型的实现。"/>
 | ||
|     <meta name="twitter:site" content="@labmlai"/>
 | ||
|     <meta name="twitter:creator" content="@labmlai"/>
 | ||
| 
 | ||
|     <meta property="og:url" content="https://nn.labml.ai/rl/dqn/model.html"/>
 | ||
|     <meta property="og:title" content="深度问网络 (DQN) 模型"/>
 | ||
|     <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
 | ||
|     <meta property="og:site_name" content="深度问网络 (DQN) 模型"/>
 | ||
|     <meta property="og:type" content="object"/>
 | ||
|     <meta property="og:title" content="深度问网络 (DQN) 模型"/>
 | ||
|     <meta property="og:description" content="深度问网络 (DQN) 神经网络模型的实现。"/>
 | ||
| 
 | ||
|     <title>深度问网络 (DQN) 模型</title>
 | ||
|     <link rel="shortcut icon" href="/icon.png"/>
 | ||
|     <link rel="stylesheet" href="../../pylit.css?v=1">
 | ||
|     <link rel="canonical" href="https://nn.labml.ai/rl/dqn/model.html"/>
 | ||
|     <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
 | ||
| 
 | ||
|     <!-- Global site tag (gtag.js) - Google Analytics -->
 | ||
|     <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
 | ||
|     <script>
 | ||
|         window.dataLayer = window.dataLayer || [];
 | ||
| 
 | ||
|         function gtag() {
 | ||
|             dataLayer.push(arguments);
 | ||
|         }
 | ||
| 
 | ||
|         gtag('js', new Date());
 | ||
| 
 | ||
|         gtag('config', 'G-4V3HC8HBLH');
 | ||
|     </script>
 | ||
| </head>
 | ||
| <body>
 | ||
| <div id='container'>
 | ||
|     <div id="background"></div>
 | ||
|     <div class='section'>
 | ||
|         <div class='docs'>
 | ||
|             <p>
 | ||
|                 <a class="parent" href="/">home</a>
 | ||
|                 <a class="parent" href="../index.html">rl</a>
 | ||
|                 <a class="parent" href="index.html">dqn</a>
 | ||
|             </p>
 | ||
|             <p>
 | ||
|                 <a href="https://github.com/sponsors/labmlai" target="_blank">
 | ||
|                     <img alt="Sponsor"
 | ||
|                          src="https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86"
 | ||
|                          style="max-width:100%;"/></a>
 | ||
|                 <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations" target="_blank">
 | ||
|                     <img alt="Github"
 | ||
|                          src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
 | ||
|                          style="max-width:100%;"/></a>
 | ||
|                 <a href="https://twitter.com/labmlai" rel="nofollow" target="_blank">
 | ||
|                     <img alt="Twitter"
 | ||
|                          src="https://img.shields.io/twitter/follow/labmlai?style=social"
 | ||
|                          style="max-width:100%;"/></a>
 | ||
|             </p>
 | ||
|             <p>
 | ||
|                 <a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/rl/dqn/model.py" target="_blank">
 | ||
|                     View code on Github</a>
 | ||
|             </p>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-0'>
 | ||
|         <div class='docs doc-strings'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-0'>#</a>
 | ||
|             </div>
 | ||
|             <h1>深度问网络 (DQN) 模型</h1>
 | ||
| <p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/rl/dqn/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a><a href="https://app.labml.ai/run/fe1ad986237511ec86e8b763a2d3f710"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen"></a></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">13</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
 | ||
| <span class="lineno">14</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
 | ||
| <span class="lineno">15</span>
 | ||
| <span class="lineno">16</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-1'>
 | ||
|         <div class='docs doc-strings'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-1'>#</a>
 | ||
|             </div>
 | ||
|             <h2>决斗网络 ⚔️<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqk" style=""><span class="mord mathnormal" style="">Q</span></span></span></span></span></span> 价值观模型</h2>
 | ||
| <p>我们正在使用决<a href="https://papers.labml.ai/paper/1511.06581">斗网络</a>来计算 Q 值。决斗网络架构背后的直觉是,在大多数州,行动无关紧要,而在某些州,行动意义重大。决斗网络可以很好地体现这一点。</p>
 | ||
| <span ><span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:3.6000200000000007em;vertical-align:-1.5500100000000003em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0500100000000003em;"><span style="top:-4.36001em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mord"><span class="mord coloredeq eqk" style=""><span class="mord mathnormal" style="">Q</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span><span style="top:-2.5500099999999994em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mop"><span class="mop mathbb" style="position:relative;top:0.094445em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.34480000000000005em;"><span style="top:-2.5198em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mrel mtight">∼</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span><span class="mopen mtight">(</span><span class="mord mathnormal mtight">s</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3551999999999999em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="delimsizing size2">[</span></span><span class="mord"><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mord"><span class="delimsizing size2">]</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500100000000003em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0500100000000003em;"><span style="top:-4.36001em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord coloredeq eql" style=""><span class="mord mathnormal" style="margin-right:0.22222em">V</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">π</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span></span></span><span style="top:-2.5500099999999994em;"><span class="pstrut" style="height:3.15em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500100000000003em;"><span></span></span></span></span></span></span></span></span></span></span></span></span><p>因此,我们为<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eql" style=""><span class="mord mathnormal" style="margin-right:0.22222em">V</span></span></span></span></span></span>和创建了两个网络,<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span></span></span></span></span>然后<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord coloredeq eqk" style=""><span class="mord mathnormal" style="">Q</span></span></span></span></span></span>从中获取。<span ><span class="katex-display"><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqk" style=""><span class="mord mathnormal" style="">Q</span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eql" style=""><span class="mord mathnormal" style="margin-right:0.22222em">V</span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.6431459999999998em;vertical-align:-1.321706em;"></span><span class="mord"><span class="delimsizing size2">(</span></span><span class="mord coloredeq eqd" style=""><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="">s</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="">a</span><span class="mclose" style="">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord" style=""><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style=""><span class="mord" style="">∣</span><span class="mord coloredeq eqj" style=""><span class="mord mathcal" style="">A</span></span><span class="mord" style="">∣</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style=""><span class="mord" style="">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits" style=""><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.050005em;"><span style="top:-1.8556639999999998em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6828285714285715em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">′</span></span></span></span></span></span></span></span></span><span class="mrel mtight" style="">∈</span><span class="mord mtight coloredeq eqj" style=""><span class="mord mathcal mtight" style="">A</span></span></span></span></span><span style="top:-3.0500049999999996em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op" style="">∑</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.321706em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="">s</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord" style=""><span class="mord mathnormal" style="">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">′</span></span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span><span class="mord"><span class="delimsizing size2">)</span></span></span></span></span></span></span>我们共享<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eql" style=""><span class="mord mathnormal" style="margin-right:0.22222em">V</span></span></span></span></span></span>和<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span></span></span></span></span>网络的初始层。</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">19</span><span class="k">class</span> <span class="nc">Model</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-2'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-2'>#</a>
 | ||
|             </div>
 | ||
|             
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">50</span>    <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
 | ||
| <span class="lineno">51</span>        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
 | ||
| <span class="lineno">52</span>        <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-3'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-3'>#</a>
 | ||
|             </div>
 | ||
|             <p>第一个卷积层需要一个<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">84</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">84</span></span></span></span></span>帧并生成一个<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">20</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">20</span></span></span></span></span>帧</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">55</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">4</span><span class="p">),</span>
 | ||
| <span class="lineno">56</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-4'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-4'>#</a>
 | ||
|             </div>
 | ||
|             <p>第二个卷积层获取一个<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">20</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">20</span></span></span></span></span>帧并生成一个<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">9</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">9</span></span></span></span></span>帧</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">60</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
 | ||
| <span class="lineno">61</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-5'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-5'>#</a>
 | ||
|             </div>
 | ||
|             <p>第三个卷积层获取一个<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">9</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">9</span></span></span></span></span>帧并生成一个<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">7</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">7</span></span></span></span></span>帧</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">65</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
 | ||
| <span class="lineno">66</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
 | ||
| <span class="lineno">67</span>        <span class="p">)</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-6'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-6'>#</a>
 | ||
|             </div>
 | ||
|             <p>完全连接的图层从第三个卷积图层获取展平的帧,并输出<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">512</span></span></span></span></span>要素</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">72</span>        <span class="bp">self</span><span class="o">.</span><span class="n">lin</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="mi">7</span> <span class="o">*</span> <span class="mi">7</span> <span class="o">*</span> <span class="mi">64</span><span class="p">,</span> <span class="n">out_features</span><span class="o">=</span><span class="mi">512</span><span class="p">)</span>
 | ||
| <span class="lineno">73</span>        <span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-7'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-7'>#</a>
 | ||
|             </div>
 | ||
|             <p>这个头给出了状态值<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eql" style=""><span class="mord mathnormal" style="margin-right:0.22222em">V</span></span></span></span></span></span></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">76</span>        <span class="bp">self</span><span class="o">.</span><span class="n">state_value</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
 | ||
| <span class="lineno">77</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">out_features</span><span class="o">=</span><span class="mi">256</span><span class="p">),</span>
 | ||
| <span class="lineno">78</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
 | ||
| <span class="lineno">79</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">out_features</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
 | ||
| <span class="lineno">80</span>        <span class="p">)</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-8'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-8'>#</a>
 | ||
|             </div>
 | ||
|             <p>这个头给出了动作值<span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span></span></span></span></span></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">82</span>        <span class="bp">self</span><span class="o">.</span><span class="n">action_value</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
 | ||
| <span class="lineno">83</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">out_features</span><span class="o">=</span><span class="mi">256</span><span class="p">),</span>
 | ||
| <span class="lineno">84</span>            <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
 | ||
| <span class="lineno">85</span>            <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span> <span class="n">out_features</span><span class="o">=</span><span class="mi">4</span><span class="p">),</span>
 | ||
| <span class="lineno">86</span>        <span class="p">)</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-9'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-9'>#</a>
 | ||
|             </div>
 | ||
|             
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">88</span>    <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">obs</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-10'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-10'>#</a>
 | ||
|             </div>
 | ||
|             <p>卷积</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">90</span>        <span class="n">h</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">obs</span><span class="p">)</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-11'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-11'>#</a>
 | ||
|             </div>
 | ||
|             <p>线性图层的整形</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">92</span>        <span class="n">h</span> <span class="o">=</span> <span class="n">h</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">7</span> <span class="o">*</span> <span class="mi">7</span> <span class="o">*</span> <span class="mi">64</span><span class="p">))</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-12'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-12'>#</a>
 | ||
|             </div>
 | ||
|             <p>线性层</p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">95</span>        <span class="n">h</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lin</span><span class="p">(</span><span class="n">h</span><span class="p">))</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-13'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-13'>#</a>
 | ||
|             </div>
 | ||
|             <p><span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span></span></span></span></span></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">98</span>        <span class="n">action_value</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">action_value</span><span class="p">(</span><span class="n">h</span><span class="p">)</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-14'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-14'>#</a>
 | ||
|             </div>
 | ||
|             <p><span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord coloredeq eql" style=""><span class="mord mathnormal" style="margin-right:0.22222em">V</span></span></span></span></span></span></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">100</span>        <span class="n">state_value</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_value</span><span class="p">(</span><span class="n">h</span><span class="p">)</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-15'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-15'>#</a>
 | ||
|             </div>
 | ||
|             <p><span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1.365108em;vertical-align:-0.52em;"></span><span class="mord coloredeq eqd" style=""><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="">s</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="">a</span><span class="mclose" style="">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord" style=""><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">∣</span><span class="mord mtight coloredeq eqj" style=""><span class="mord mathcal mtight" style="">A</span></span><span class="mord mtight" style="">∣</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop" style=""><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.17862099999999992em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6828285714285715em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">′</span></span></span></span></span></span></span></span></span><span class="mrel mtight" style="">∈</span><span class="mord mtight coloredeq eqj" style=""><span class="mord mathcal mtight" style="">A</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.32708000000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="">s</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord" style=""><span class="mord mathnormal" style="">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">′</span></span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span></span></span></span></span></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">103</span>        <span class="n">action_score_centered</span> <span class="o">=</span> <span class="n">action_value</span> <span class="o">-</span> <span class="n">action_value</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="n">keepdim</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='section' id='section-16'>
 | ||
|         <div class='docs'>
 | ||
|             <div class='section-link'>
 | ||
|                 <a href='#section-16'>#</a>
 | ||
|             </div>
 | ||
|             <p><span ><span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eqk" style=""><span class="mord mathnormal" style="">Q</span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord coloredeq eql" style=""><span class="mord mathnormal" style="margin-right:0.22222em">V</span></span><span class="mopen">(</span><span class="mord mathnormal">s</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.80002em;vertical-align:-0.65002em;"></span><span class="mord"><span class="delimsizing size2">(</span></span><span class="mord coloredeq eqd" style=""><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="">s</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="">a</span><span class="mclose" style="">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin" style="">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord" style=""><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">∣</span><span class="mord mtight coloredeq eqj" style=""><span class="mord mathcal mtight" style="">A</span></span><span class="mord mtight" style="">∣</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop" style=""><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.17862099999999992em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style=""><span class="mord mathnormal mtight" style="">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.6828285714285715em;"><span style="top:-2.786em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">′</span></span></span></span></span></span></span></span></span><span class="mrel mtight" style="">∈</span><span class="mord mtight coloredeq eqj" style=""><span class="mord mathcal mtight" style="">A</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.32708000000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord coloredeq eqj" style=""><span class="mord mathnormal" style="">A</span></span><span class="mopen" style="">(</span><span class="mord mathnormal" style="">s</span><span class="mpunct" style="">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord" style=""><span class="mord mathnormal" style="">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight" style=""><span class="mord mtight" style=""><span class="mord mtight" style="">′</span></span></span></span></span></span></span></span></span><span class="mclose" style="">)</span></span><span class="mord"><span class="delimsizing size2">)</span></span></span></span></span></span></p>
 | ||
| 
 | ||
|         </div>
 | ||
|         <div class='code'>
 | ||
|             <div class="highlight"><pre><span class="lineno">105</span>        <span class="n">q</span> <span class="o">=</span> <span class="n">state_value</span> <span class="o">+</span> <span class="n">action_score_centered</span>
 | ||
| <span class="lineno">106</span>
 | ||
| <span class="lineno">107</span>        <span class="k">return</span> <span class="n">q</span></pre></div>
 | ||
|         </div>
 | ||
|     </div>
 | ||
|     <div class='footer'>
 | ||
|         <a href="https://papers.labml.ai">Trending Research Papers</a>
 | ||
|         <a href="https://labml.ai">labml.ai</a>
 | ||
|     </div>
 | ||
| </div>
 | ||
| <script src=../../interactive.js?v=1"></script>
 | ||
| <script>
 | ||
|     function handleImages() {
 | ||
|         var images = document.querySelectorAll('p>img')
 | ||
| 
 | ||
|         for (var i = 0; i < images.length; ++i) {
 | ||
|             handleImage(images[i])
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     function handleImage(img) {
 | ||
|         img.parentElement.style.textAlign = 'center'
 | ||
| 
 | ||
|         var modal = document.createElement('div')
 | ||
|         modal.id = 'modal'
 | ||
| 
 | ||
|         var modalContent = document.createElement('div')
 | ||
|         modal.appendChild(modalContent)
 | ||
| 
 | ||
|         var modalImage = document.createElement('img')
 | ||
|         modalContent.appendChild(modalImage)
 | ||
| 
 | ||
|         var span = document.createElement('span')
 | ||
|         span.classList.add('close')
 | ||
|         span.textContent = 'x'
 | ||
|         modal.appendChild(span)
 | ||
| 
 | ||
|         img.onclick = function () {
 | ||
|             console.log('clicked')
 | ||
|             document.body.appendChild(modal)
 | ||
|             modalImage.src = img.src
 | ||
|         }
 | ||
| 
 | ||
|         span.onclick = function () {
 | ||
|             document.body.removeChild(modal)
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     handleImages()
 | ||
| </script>
 | ||
| </body>
 | ||
| </html> | 
