Files
Varuna Jayasiri 6a44440a07 fixes
2021-06-06 15:33:24 +05:30
..
2021-06-06 15:12:11 +05:30
2021-06-06 15:33:24 +05:30
2021-06-06 15:33:24 +05:30

<!DOCTYPE html>
<html>
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>

    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta name="twitter:title" content="Masked Language Model (MLM)"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>

    <meta property="og:url" content="https://nn.labml.ai/transformers/mlm/readme.html"/>
    <meta property="og:title" content="Masked Language Model (MLM)"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta property="og:site_name" content="LabML Neural Networks"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="Masked Language Model (MLM)"/>
    <meta property="og:description" content=""/>

    <title>Masked Language Model (MLM)</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../../pylit.css">
    <link rel="canonical" href="https://nn.labml.ai/transformers/mlm/readme.html"/>
    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];

        function gtag() {
            dataLayer.push(arguments);
        }

        gtag('js', new Date());

        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="../index.html">transformers</a>
                <a class="parent" href="index.html">mlm</a>
            </p>
            <p>

                <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/mlm/readme.md">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai"
                   rel="nofollow">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
            <div class='docs'>
                <div class='section-link'>
                    <a href='#section-0'>#</a>
                </div>
                <h1><a href="https://nn.labml.ai/transformers/mlm/index.html">Masked Language Model (MLM)</a></h1>
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of Masked Language Model (MLM)
 used to pre-train the BERT model introduced in the paper
<a href="https://arxiv.org/abs/1810.04805">BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</a>.</p>
<h2>BERT Pretraining</h2>
<p>BERT model is a transformer model.
The paper pre-trains the model using MLM and with next sentence prediction.
We have only implemented MLM here.</p>
<h3>Next sentence prediction</h3>
<p>In <em>next sentence prediction</em>, the model is given two sentences <code>A</code> and <code>B</code> and the model
makes a binary prediction whether <code>B</code> is the sentence that follows <code>A</code> in the actual text.
The model is fed with actual sentence pairs 50% of the time and random pairs 50% of the time.
This classification is done while applying MLM. <em>We haven&rsquo;t implemented this here.</em></p>
<h2>Masked LM</h2>
<p>This masks a percentage of tokens at random and trains the model to predict
the masked tokens.
They <strong>mask 15% of the tokens</strong> by replacing them with a special <code>[MASK]</code> token.</p>
<p>The loss is computed on predicting the masked tokens only.
This causes a problem during fine-tuning and actual usage since there are no <code>[MASK]</code> tokens
 at that time.
Therefore we might not get any meaningful representations.</p>
<p>To overcome this <strong>10% of the masked tokens are replaced with the original token</strong>,
and another <strong>10% of the masked tokens are replaced with a random token</strong>.
This trains the model to give representations about the actual token whether or not the
input token at that position is a <code>[MASK]</code>.
And replacing with a random token causes it to
give a representation that has information from the context as well;
because it has to use the context to fix randomly replaced tokens.</p>
<h2>Training</h2>
<p>MLMs are harder to train than autoregressive models because they have a smaller training signal.
i.e. only a small percentage of predictions are trained per sample.</p>
<p>Another problem is since the model is bidirectional, any token can see any other token.
This makes the &ldquo;credit assignment&rdquo; harder.
Let&rsquo;s say you have the character level model trying to predict <code>home *s where i want to be</code>.
At least during the early stages of the training, it&rsquo;ll be super hard to figure out why the
replacement for <code>*</code> should be <code>i</code>, it could be anything from the whole sentence.
Whilst, in an autoregressive setting the model will only have to use <code>h</code> to predict <code>o</code> and
<code>hom</code> to predict <code>e</code> and so on. So the model will initially start predicting with a shorter context first
and then learn to use longer contexts later.
Since MLMs have this problem it&rsquo;s a lot faster to train if you start with a smaller sequence length
initially and then use a longer sequence length later.</p>
<p>Here is <a href="https://nn.labml.ai/transformers/mlm/experiment.html">the training code</a> for a simple MLM model.</p>
<p><a href="https://app.labml.ai/run/3a6d22b6c67111ebb03d6764d13a38d1"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
            </div>
            <div class='code'>
                
            </div>
        </div>
    </div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
    MathJax.Hub.Config({
        tex2jax: {
            inlineMath: [ ['$','$'] ],
            displayMath: [ ['$$','$$'] ],
            processEscapes: true,
            processEnvironments: true
        },
        // Center justify equations in code and markdown cells. Elsewhere
        // we use CSS to left justify single line equations in code cells.
        displayAlign: 'center',
        "HTML-CSS": { fonts: ["TeX"] }
    });
</script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')

        console.log(images);
        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }

    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'

        var modal = document.createElement('div')
        modal.id = 'modal'

        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)

        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)

        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)

        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }

        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }

    handleImages()
</script>
</body>
</html>