Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

544 lines
29 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="This experiment trains a FNet based model on AG News dataset."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="FNet Experiment"/>
<meta name="twitter:description" content="This experiment trains a FNet based model on AG News dataset."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/transformers/fnet/experiment.html"/>
<meta property="og:title" content="FNet Experiment"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="FNet Experiment"/>
<meta property="og:description" content="This experiment trains a FNet based model on AG News dataset."/>
<title>FNet Experiment</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/transformers/fnet/experiment.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">transformers</a>
<a class="parent" href="index.html">fnet</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/fnet/experiment.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1><a href="index.html">FNet</a> Experiment</h1>
<p>This is an annotated PyTorch experiment to train a <a href="index.html">FNet model</a>.</p>
<p>This is based on
<a href="../../experiments/nlp_classification.html">general training loop and configurations for AG News classification task</a>.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">15</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">16</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
<span class="lineno">17</span>
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span>
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span>
<span class="lineno">20</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
<span class="lineno">21</span><span class="kn">from</span> <span class="nn">labml_nn.experiments.nlp_classification</span> <span class="kn">import</span> <span class="n">NLPClassificationConfigs</span>
<span class="lineno">22</span><span class="kn">from</span> <span class="nn">labml_nn.transformers</span> <span class="kn">import</span> <span class="n">Encoder</span>
<span class="lineno">23</span><span class="kn">from</span> <span class="nn">labml_nn.transformers</span> <span class="kn">import</span> <span class="n">TransformerConfigs</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h1>Transformer based classifier model</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">26</span><span class="k">class</span> <span class="nc">TransformerClassifier</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<ul>
<li><code>encoder</code> is the transformer <a href="../models.html#Encoder">Encoder</a></li>
<li><code>src_embed</code> is the token
<a href="../models.html#EmbeddingsWithLearnedPositionalEncoding">embedding module (with positional encodings)</a></li>
<li><code>generator</code> is the <a href="../models.html#Generator">final fully connected layer</a> that gives the logits.</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">30</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">encoder</span><span class="p">:</span> <span class="n">Encoder</span><span class="p">,</span> <span class="n">src_embed</span><span class="p">:</span> <span class="n">Module</span><span class="p">,</span> <span class="n">generator</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">37</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="lineno">38</span> <span class="bp">self</span><span class="o">.</span><span class="n">src_embed</span> <span class="o">=</span> <span class="n">src_embed</span>
<span class="lineno">39</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder</span> <span class="o">=</span> <span class="n">encoder</span>
<span class="lineno">40</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span> <span class="o">=</span> <span class="n">generator</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Get the token embeddings with positional encodings</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">44</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">src_embed</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Transformer encoder</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">46</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Get logits for classification.</p>
<p>We set the <code>[CLS]</code> token at the last position of the sequence.
This is extracted by <code>x[-1]</code>, where <code>x</code> is of
shape <code>[seq_len, batch_size, d_model]</code></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Return results
(second value is for state, since our trainer is used with RNNs also)</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">56</span> <span class="k">return</span> <span class="n">x</span><span class="p">,</span> <span class="kc">None</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<h2>Configurations</h2>
<p>This inherits from
<a href="../../experiments/nlp_classification.html"><code>NLPClassificationConfigs</code></a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">59</span><span class="k">class</span> <span class="nc">Configs</span><span class="p">(</span><span class="n">NLPClassificationConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Classification model</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">68</span> <span class="n">model</span><span class="p">:</span> <span class="n">TransformerClassifier</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Transformer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span> <span class="n">transformer</span><span class="p">:</span> <span class="n">TransformerConfigs</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<h3>Transformer configurations</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">73</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">transformer</span><span class="p">)</span>
<span class="lineno">74</span><span class="k">def</span> <span class="nf">_transformer_configs</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>We use our
<a href="../configs.html#TransformerConfigs">configurable transformer implementation</a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">81</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">TransformerConfigs</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Set the vocabulary sizes for embeddings and generating logits</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">83</span> <span class="n">conf</span><span class="o">.</span><span class="n">n_src_vocab</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">n_tokens</span>
<span class="lineno">84</span> <span class="n">conf</span><span class="o">.</span><span class="n">n_tgt_vocab</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">n_tokens</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">87</span> <span class="k">return</span> <span class="n">conf</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Create <code>FNetMix</code> module that can replace the self-attention in
<a href="../models.html#TransformerLayer">transformer encoder layer</a>
.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">90</span><span class="nd">@option</span><span class="p">(</span><span class="n">TransformerConfigs</span><span class="o">.</span><span class="n">encoder_attn</span><span class="p">)</span>
<span class="lineno">91</span><span class="k">def</span> <span class="nf">fnet_mix</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">97</span> <span class="kn">from</span> <span class="nn">labml_nn.transformers.fnet</span> <span class="kn">import</span> <span class="n">FNetMix</span>
<span class="lineno">98</span> <span class="k">return</span> <span class="n">FNetMix</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Create classification model</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">101</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
<span class="lineno">102</span><span class="k">def</span> <span class="nf">_model</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">106</span> <span class="n">m</span> <span class="o">=</span> <span class="n">TransformerClassifier</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">transformer</span><span class="o">.</span><span class="n">encoder</span><span class="p">,</span>
<span class="lineno">107</span> <span class="n">c</span><span class="o">.</span><span class="n">transformer</span><span class="o">.</span><span class="n">src_embed</span><span class="p">,</span>
<span class="lineno">108</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">n_classes</span><span class="p">))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="lineno">109</span>
<span class="lineno">110</span> <span class="k">return</span> <span class="n">m</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">113</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Create experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">115</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;fnet&quot;</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>Create configs</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">117</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Override configurations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">119</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="p">{</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Use world level tokenizer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">121</span> <span class="s1">&#39;tokenizer&#39;</span><span class="p">:</span> <span class="s1">&#39;basic_english&#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-25'>
<div class='docs'>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Train for $32$ epochs</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">124</span> <span class="s1">&#39;epochs&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-26'>
<div class='docs'>
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>Switch between training and validation for $10$ times
per epoch</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">127</span> <span class="s1">&#39;inner_iterations&#39;</span><span class="p">:</span> <span class="mi">10</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-27'>
<div class='docs'>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
<p>Transformer configurations (same as defaults)</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">130</span> <span class="s1">&#39;transformer.d_model&#39;</span><span class="p">:</span> <span class="mi">512</span><span class="p">,</span>
<span class="lineno">131</span> <span class="s1">&#39;transformer.ffn.d_ff&#39;</span><span class="p">:</span> <span class="mi">2048</span><span class="p">,</span>
<span class="lineno">132</span> <span class="s1">&#39;transformer.n_heads&#39;</span><span class="p">:</span> <span class="mi">8</span><span class="p">,</span>
<span class="lineno">133</span> <span class="s1">&#39;transformer.n_layers&#39;</span><span class="p">:</span> <span class="mi">6</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-28'>
<div class='docs'>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
<p>Use <a href="index.html">FNet</a> instead of self-a
ttention</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">137</span> <span class="s1">&#39;transformer.encoder_attn&#39;</span><span class="p">:</span> <span class="s1">&#39;fnet_mix&#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-29'>
<div class='docs'>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p>Use <a href="../../optimizers/noam.html">Noam optimizer</a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">140</span> <span class="s1">&#39;optimizer.optimizer&#39;</span><span class="p">:</span> <span class="s1">&#39;Noam&#39;</span><span class="p">,</span>
<span class="lineno">141</span> <span class="s1">&#39;optimizer.learning_rate&#39;</span><span class="p">:</span> <span class="mf">1.</span><span class="p">,</span>
<span class="lineno">142</span> <span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-30'>
<div class='docs'>
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Set models for saving and loading</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">145</span> <span class="n">experiment</span><span class="o">.</span><span class="n">add_pytorch_models</span><span class="p">({</span><span class="s1">&#39;model&#39;</span><span class="p">:</span> <span class="n">conf</span><span class="o">.</span><span class="n">model</span><span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-31'>
<div class='docs'>
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
<p>Start the experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">148</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-32'>
<div class='docs'>
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Run training</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">150</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-33'>
<div class='docs'>
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">154</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">155</span> <span class="n">main</span><span class="p">()</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>