Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

444 lines
30 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="This is training code with notes for a feedback transformer."/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Train Feedback Transformer"/>
<meta name="twitter:description" content="This is training code with notes for a feedback transformer."/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/transformers/feedback/experiment.html"/>
<meta property="og:title" content="Train Feedback Transformer"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Train Feedback Transformer"/>
<meta property="og:description" content="This is training code with notes for a feedback transformer."/>
<title>Train Feedback Transformer</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/transformers/feedback/experiment.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">transformers</a>
<a class="parent" href="index.html">feedback</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/feedback/experiment.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Train Feedback Transformer</h1>
<p>This trains a <a href="index.html">feedback transformer</a> model for auto-regression.
You can pick the original feedback transformer or the new version
where the keys and values are precalculated.</p>
<p>Here&rsquo;s a Colab notebook for training a feedback transformer on Tiny Shakespeare dataset.</p>
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/feedback/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
<a href="https://app.labml.ai/run/d8eb9416530a11eb8fb50242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">19</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">20</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
<span class="lineno">21</span>
<span class="lineno">22</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span>
<span class="lineno">23</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span>
<span class="lineno">24</span><span class="kn">from</span> <span class="nn">labml.utils.pytorch</span> <span class="kn">import</span> <span class="n">get_modules</span>
<span class="lineno">25</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
<span class="lineno">26</span>
<span class="lineno">27</span><span class="kn">from</span> <span class="nn">labml_nn.experiments.nlp_autoregression</span> <span class="kn">import</span> <span class="n">NLPAutoRegressionConfigs</span>
<span class="lineno">28</span><span class="kn">from</span> <span class="nn">labml_nn.transformers</span> <span class="kn">import</span> <span class="n">Encoder</span><span class="p">,</span> <span class="n">Generator</span><span class="p">,</span> <span class="n">TransformerConfigs</span>
<span class="lineno">29</span><span class="kn">from</span> <span class="nn">labml_nn.transformers.utils</span> <span class="kn">import</span> <span class="n">subsequent_mask</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Auto regressive model</h2>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">32</span><span class="k">class</span> <span class="nc">AutoregressiveModel</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">37</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_vocab</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">transformer</span><span class="p">:</span> <span class="n">Module</span><span class="p">):</span>
<span class="lineno">38</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Token embedding module</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">40</span> <span class="bp">self</span><span class="o">.</span><span class="n">src_embed</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">n_vocab</span><span class="p">,</span> <span class="n">d_model</span><span class="p">)</span>
<span class="lineno">41</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformer</span> <span class="o">=</span> <span class="n">transformer</span>
<span class="lineno">42</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_vocab</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">44</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Embed the tokens</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">46</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">src_embed</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Run it through the the transformer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">48</span> <span class="n">res</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Generate logits of the next token</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">50</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">generator</span><span class="p">(</span><span class="n">res</span><span class="p">),</span> <span class="kc">None</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<h2>Configurations</h2>
<p>The default configs can and will be over-ridden when we start the experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">53</span><span class="k">class</span> <span class="nc">Configs</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">60</span> <span class="n">model</span><span class="p">:</span> <span class="n">AutoregressiveModel</span>
<span class="lineno">61</span>
<span class="lineno">62</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">512</span>
<span class="lineno">63</span> <span class="n">heads</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span>
<span class="lineno">64</span> <span class="n">dropout</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="lineno">65</span> <span class="n">d_ff</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2048</span>
<span class="lineno">66</span> <span class="n">n_layers</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">6</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Create <a href="index.html">original feedback transformer</a>.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">69</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
<span class="lineno">70</span><span class="k">def</span> <span class="nf">feedback_transformer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">74</span> <span class="kn">from</span> <span class="nn">labml_nn.transformers.feedback</span> <span class="kn">import</span> <span class="n">FeedbackTransformer</span><span class="p">,</span> <span class="n">FeedbackTransformerLayer</span><span class="p">,</span> \
<span class="lineno">75</span> <span class="n">FeedbackAttention</span><span class="p">,</span> <span class="n">FeedForward</span>
<span class="lineno">76</span>
<span class="lineno">77</span> <span class="k">return</span> <span class="n">AutoregressiveModel</span><span class="p">(</span>
<span class="lineno">78</span> <span class="n">c</span><span class="o">.</span><span class="n">n_tokens</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span>
<span class="lineno">79</span> <span class="n">FeedbackTransformer</span><span class="p">(</span>
<span class="lineno">80</span> <span class="n">FeedbackTransformerLayer</span><span class="p">(</span><span class="n">d_model</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span>
<span class="lineno">81</span> <span class="n">attn</span><span class="o">=</span><span class="n">FeedbackAttention</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">82</span> <span class="n">feed_forward</span><span class="o">=</span><span class="n">FeedForward</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_ff</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">83</span> <span class="n">dropout_prob</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">84</span> <span class="n">c</span><span class="o">.</span><span class="n">n_layers</span><span class="p">))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Create <a href="index.html#kv_shared">updated feedback transformer</a>, with precalculated keys and values.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">87</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
<span class="lineno">88</span><span class="k">def</span> <span class="nf">feedback_transformer_kv</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">92</span> <span class="kn">from</span> <span class="nn">labml_nn.transformers.feedback</span> <span class="kn">import</span> <span class="n">FeedbackTransformerKV</span><span class="p">,</span> <span class="n">FeedbackTransformerLayer</span><span class="p">,</span> \
<span class="lineno">93</span> <span class="n">FeedbackAttention</span><span class="p">,</span> <span class="n">FeedForward</span>
<span class="lineno">94</span>
<span class="lineno">95</span> <span class="k">return</span> <span class="n">AutoregressiveModel</span><span class="p">(</span>
<span class="lineno">96</span> <span class="n">c</span><span class="o">.</span><span class="n">n_tokens</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span>
<span class="lineno">97</span> <span class="n">FeedbackTransformerKV</span><span class="p">(</span>
<span class="lineno">98</span> <span class="n">FeedbackTransformerLayer</span><span class="p">(</span><span class="n">d_model</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span>
<span class="lineno">99</span> <span class="n">attn</span><span class="o">=</span><span class="n">FeedbackAttention</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">,</span>
<span class="lineno">100</span> <span class="n">is_kv_precomputed</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="lineno">101</span> <span class="n">feed_forward</span><span class="o">=</span><span class="n">FeedForward</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_ff</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">102</span> <span class="n">dropout_prob</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">dropout</span><span class="p">),</span>
<span class="lineno">103</span> <span class="n">c</span><span class="o">.</span><span class="n">n_layers</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">heads</span><span class="p">))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">106</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Create experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">108</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;feedback_transformer&quot;</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Create configs</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">110</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Load configurations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">112</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>A dictionary of configurations to override</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">114</span> <span class="p">{</span><span class="s1">&#39;tokenizer&#39;</span><span class="p">:</span> <span class="s1">&#39;character&#39;</span><span class="p">,</span>
<span class="lineno">115</span> <span class="s1">&#39;text&#39;</span><span class="p">:</span> <span class="s1">&#39;tiny_shakespeare&#39;</span><span class="p">,</span>
<span class="lineno">116</span> <span class="s1">&#39;optimizer.learning_rate&#39;</span><span class="p">:</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="lineno">117</span> <span class="s1">&#39;optimizer.optimizer&#39;</span><span class="p">:</span> <span class="s1">&#39;Noam&#39;</span><span class="p">,</span>
<span class="lineno">118</span> <span class="s1">&#39;prompt&#39;</span><span class="p">:</span> <span class="s1">&#39;It is&#39;</span><span class="p">,</span>
<span class="lineno">119</span> <span class="s1">&#39;prompt_separator&#39;</span><span class="p">:</span> <span class="s1">&#39;&#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Use <code>feedback_transformer</code> for original feedback transformer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">122</span> <span class="s1">&#39;model&#39;</span><span class="p">:</span> <span class="s1">&#39;feedback_transformer_kv&#39;</span><span class="p">,</span>
<span class="lineno">123</span>
<span class="lineno">124</span> <span class="s1">&#39;train_loader&#39;</span><span class="p">:</span> <span class="s1">&#39;shuffled_train_loader&#39;</span><span class="p">,</span>
<span class="lineno">125</span> <span class="s1">&#39;valid_loader&#39;</span><span class="p">:</span> <span class="s1">&#39;shuffled_valid_loader&#39;</span><span class="p">,</span>
<span class="lineno">126</span>
<span class="lineno">127</span> <span class="s1">&#39;seq_len&#39;</span><span class="p">:</span> <span class="mi">128</span><span class="p">,</span>
<span class="lineno">128</span> <span class="s1">&#39;epochs&#39;</span><span class="p">:</span> <span class="mi">128</span><span class="p">,</span>
<span class="lineno">129</span> <span class="s1">&#39;batch_size&#39;</span><span class="p">:</span> <span class="mi">64</span><span class="p">,</span>
<span class="lineno">130</span> <span class="s1">&#39;inner_iterations&#39;</span><span class="p">:</span> <span class="mi">25</span><span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Set models for saving and loading</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">133</span> <span class="n">experiment</span><span class="o">.</span><span class="n">add_pytorch_models</span><span class="p">(</span><span class="n">get_modules</span><span class="p">(</span><span class="n">conf</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Start the experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">136</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>Run the training loop</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">138</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
<span class="lineno">139</span>
<span class="lineno">140</span>
<span class="lineno">141</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">142</span> <span class="n">main</span><span class="p">()</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>