Files
Varuna Jayasiri cff11612a0 readme
2021-07-16 08:46:12 +05:30
..
2021-07-16 08:46:12 +05:30
2021-07-16 08:35:46 +05:30
2021-07-16 08:35:46 +05:30
2021-07-16 08:46:12 +05:30
2021-07-16 08:46:12 +05:30

<!DOCTYPE html>
<html>
<head>
    <meta http-equiv="content-type" content="text/html;charset=utf-8"/>
    <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
    <meta name="description" content=""/>

    <meta name="twitter:card" content="summary"/>
    <meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta name="twitter:title" content="Deep Residual Learning for Image Recognition (ResNet)"/>
    <meta name="twitter:description" content=""/>
    <meta name="twitter:site" content="@labmlai"/>
    <meta name="twitter:creator" content="@labmlai"/>

    <meta property="og:url" content="https://nn.labml.ai/resnet/readme.html"/>
    <meta property="og:title" content="Deep Residual Learning for Image Recognition (ResNet)"/>
    <meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
    <meta property="og:site_name" content="LabML Neural Networks"/>
    <meta property="og:type" content="object"/>
    <meta property="og:title" content="Deep Residual Learning for Image Recognition (ResNet)"/>
    <meta property="og:description" content=""/>

    <title>Deep Residual Learning for Image Recognition (ResNet)</title>
    <link rel="shortcut icon" href="/icon.png"/>
    <link rel="stylesheet" href="../pylit.css">
    <link rel="canonical" href="https://nn.labml.ai/resnet/readme.html"/>
    <!-- Global site tag (gtag.js) - Google Analytics -->
    <script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
    <script>
        window.dataLayer = window.dataLayer || [];

        function gtag() {
            dataLayer.push(arguments);
        }

        gtag('js', new Date());

        gtag('config', 'G-4V3HC8HBLH');
    </script>
</head>
<body>
<div id='container'>
    <div id="background"></div>
    <div class='section'>
        <div class='docs'>
            <p>
                <a class="parent" href="/">home</a>
                <a class="parent" href="index.html">resnet</a>
            </p>
            <p>

                <a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/resnet/readme.md">
                    <img alt="Github"
                         src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
                         style="max-width:100%;"/></a>
                <a href="https://twitter.com/labmlai"
                   rel="nofollow">
                    <img alt="Twitter"
                         src="https://img.shields.io/twitter/follow/labmlai?style=social"
                         style="max-width:100%;"/></a>
            </p>
        </div>
    </div>
    <div class='section' id='section-0'>
            <div class='docs'>
                <div class='section-link'>
                    <a href='#section-0'>#</a>
                </div>
                <h1><a href="https://nn.labml.ai/resnet/index.html">Deep Residual Learning for Image Recognition (ResNet)</a></h1>
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of the paper
<a href="https://arxiv.org/abs/1512.03385">Deep Residual Learning for Image Recognition</a>.</p>
<p>ResNets train layers as residual functions to overcome the
<em>degradation problem</em>.
The degradation problem is the accuracy of deep neural networks degrading when
the number of layers becomes very high.
The accuracy increases as the number of layers increase, then saturates,
and then starts to degrade.</p>
            </div>
            <div class='code'>
                
            </div>
        </div>
    </div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
    MathJax.Hub.Config({
        tex2jax: {
            inlineMath: [ ['$','$'] ],
            displayMath: [ ['$$','$$'] ],
            processEscapes: true,
            processEnvironments: true
        },
        // Center justify equations in code and markdown cells. Elsewhere
        // we use CSS to left justify single line equations in code cells.
        displayAlign: 'center',
        "HTML-CSS": { fonts: ["TeX"] }
    });
</script>
<script>
    function handleImages() {
        var images = document.querySelectorAll('p>img')

        console.log(images);
        for (var i = 0; i < images.length; ++i) {
            handleImage(images[i])
        }
    }

    function handleImage(img) {
        img.parentElement.style.textAlign = 'center'

        var modal = document.createElement('div')
        modal.id = 'modal'

        var modalContent = document.createElement('div')
        modal.appendChild(modalContent)

        var modalImage = document.createElement('img')
        modalContent.appendChild(modalImage)

        var span = document.createElement('span')
        span.classList.add('close')
        span.textContent = 'x'
        modal.appendChild(span)

        img.onclick = function () {
            console.log('clicked')
            document.body.appendChild(modal)
            modalImage.src = img.src
        }

        span.onclick = function () {
            document.body.removeChild(modal)
        }
    }

    handleImages()
</script>
</body>
</html>