Files
Varuna Jayasiri efd2673735 cleanup
2021-06-02 21:40:05 +05:30

598 lines
38 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="A simple PyTorch implementation/tutorial of Adam optimizer"/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Adam Optimizer"/>
<meta name="twitter:description" content="A simple PyTorch implementation/tutorial of Adam optimizer"/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/optimizers/adam.html"/>
<meta property="og:title" content="Adam Optimizer"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Adam Optimizer"/>
<meta property="og:description" content="A simple PyTorch implementation/tutorial of Adam optimizer"/>
<title>Adam Optimizer</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/optimizers/adam.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">optimizers</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/optimizers/adam.py">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Adam Optimizer</h1>
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of popular optimizer <em>Adam</em> from paper
<a href="https://arxiv.org/abs/1412.6980v9">Adam: A Method for Stochastic Optimization</a>.</p>
<p><em>Adam</em> update is,</p>
<p>
<script type="math/tex; mode=display">\begin{align}
m_t &\leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t \\
v_t &\leftarrow \beta_2 v_{t-1} + (1 - \beta_2) \cdot g_t^2 \\
\hat{m}_t &\leftarrow \frac{m_t}{1-\beta_1^t} \\
\hat{v}_t &\leftarrow \frac{v_t}{1-\beta_2^t} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
\end{align}</script>
</p>
<p>where $\alpha$, $\beta_1$, $\beta_2$ and $\epsilon$ are scalar hyper parameters.
$m_t$ and $v_t$ are first and second order moments.
$\hat{m}_t$ and $\hat{v}_t$ are biased corrected moments.
$\epsilon$ is used as a fix for division by zero error, but also acts as a form of a hyper-parameter
that acts against variance in gradients.</p>
<p>Effective step taken assuming $\epsilon = 0$ is,
<script type="math/tex; mode=display">\Delta t = \alpha \cdot \frac{\hat{m}_t}{\hat{v}_t}</script>
This is bounded by,
<script type="math/tex; mode=display">\vert \Delta t \vert \le \alpha \cdot \frac{1 - \beta_1}{\sqrt{1-\beta_2}}</script>
when $1-\beta_1 \gt \sqrt{1-\beta_2}$
and
<script type="math/tex; mode=display">\vert \Delta t\vert \le \alpha</script>
otherwise.
And in most common scenarios,
<script type="math/tex; mode=display">\vert \Delta t \vert \approx \alpha</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">40</span><span></span><span class="kn">import</span> <span class="nn">math</span>
<span class="lineno">41</span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Optional</span>
<span class="lineno">42</span>
<span class="lineno">43</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">44</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">tracker</span>
<span class="lineno">45</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
<span class="lineno">46</span>
<span class="lineno">47</span><span class="kn">from</span> <span class="nn">labml_nn.optimizers</span> <span class="kn">import</span> <span class="n">GenericAdaptiveOptimizer</span><span class="p">,</span> <span class="n">WeightDecay</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Adam Optimizer</h2>
<p>We extend the class <code>GenericAdaptiveOptimizer</code> defined in <a href="index.html"><code>__init__.py</code></a>
to implement the Adam optimizer.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">50</span><span class="k">class</span> <span class="nc">Adam</span><span class="p">(</span><span class="n">GenericAdaptiveOptimizer</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<h3>Initialize the optimizer</h3>
<ul>
<li><code>params</code> is the list of parameters</li>
<li><code>lr</code> is the learning rate $\alpha$</li>
<li><code>betas</code> is a tuple of ($\beta_1$, $\beta_2$)</li>
<li><code>eps</code> is $\hat{\epsilon}$ or $\epsilon$ based on <code>optimized_update</code></li>
<li><code>weight_decay</code> is an instance of class <code>WeightDecay</code> defined in <a href="index.html"><code>__init__.py</code></a></li>
<li><code>optimized_update</code> is a flag whether to optimize the bias correction of the second moment
by doing it after adding $\epsilon$</li>
<li><code>defaults</code> is a dictionary of default for group values.
This is useful when you want to extend the class <code>Adam</code>.</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">58</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span>
<span class="lineno">59</span> <span class="n">lr</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-3</span><span class="p">,</span> <span class="n">betas</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">0.999</span><span class="p">),</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-16</span><span class="p">,</span>
<span class="lineno">60</span> <span class="n">weight_decay</span><span class="p">:</span> <span class="n">WeightDecay</span> <span class="o">=</span> <span class="n">WeightDecay</span><span class="p">(),</span>
<span class="lineno">61</span> <span class="n">optimized_update</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="lineno">62</span> <span class="n">defaults</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">76</span> <span class="n">defaults</span> <span class="o">=</span> <span class="p">{}</span> <span class="k">if</span> <span class="n">defaults</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">defaults</span>
<span class="lineno">77</span> <span class="n">defaults</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">weight_decay</span><span class="o">.</span><span class="n">defaults</span><span class="p">())</span>
<span class="lineno">78</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">defaults</span><span class="p">,</span> <span class="n">lr</span><span class="p">,</span> <span class="n">betas</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="lineno">79</span>
<span class="lineno">80</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span> <span class="o">=</span> <span class="n">weight_decay</span>
<span class="lineno">81</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimized_update</span> <span class="o">=</span> <span class="n">optimized_update</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<h3>Initialize a parameter state</h3>
<ul>
<li><code>state</code> is the optimizer state of the parameter (tensor)</li>
<li><code>group</code> stores optimizer attributes of the parameter group</li>
<li><code>param</code> is the parameter tensor $\theta_{t-1}$</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">83</span> <span class="k">def</span> <span class="nf">init_state</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">param</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>This is the number of optimizer steps taken on the parameter, $t$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">93</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;step&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Exponential moving average of gradients, $m_t$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">95</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;exp_avg&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">param</span><span class="p">,</span> <span class="n">memory_format</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">preserve_format</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Exponential moving average of squared gradient values, $v_t$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">97</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;exp_avg_sq&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">param</span><span class="p">,</span> <span class="n">memory_format</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">preserve_format</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<h3>Calculate $m_t$ and and $v_t$</h3>
<ul>
<li><code>state</code> is the optimizer state of the parameter (tensor)</li>
<li><code>group</code> stores optimizer attributes of the parameter group</li>
<li><code>grad</code> is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">99</span> <span class="k">def</span> <span class="nf">get_mv</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">],</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Get $\beta_1$ and $\beta_2$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">109</span> <span class="n">beta1</span><span class="p">,</span> <span class="n">beta2</span> <span class="o">=</span> <span class="n">group</span><span class="p">[</span><span class="s1">&#39;betas&#39;</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Get $m_{t-1}$ and $v_{t-1}$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">112</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;exp_avg&#39;</span><span class="p">],</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;exp_avg_sq&#39;</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>In-place calculation of $m_t$
<script type="math/tex; mode=display">m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">116</span> <span class="n">m</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="n">beta1</span><span class="p">)</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">grad</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mi">1</span> <span class="o">-</span> <span class="n">beta1</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>In-place calculation of $v_t$
<script type="math/tex; mode=display">v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) \cdot g_t^2</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">119</span> <span class="n">v</span><span class="o">.</span><span class="n">mul_</span><span class="p">(</span><span class="n">beta2</span><span class="p">)</span><span class="o">.</span><span class="n">addcmul_</span><span class="p">(</span><span class="n">grad</span><span class="p">,</span> <span class="n">grad</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">1</span> <span class="o">-</span> <span class="n">beta2</span><span class="p">)</span>
<span class="lineno">120</span>
<span class="lineno">121</span> <span class="k">return</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<h3>Get learning-rate</h3>
<p>This returns the modified learning rate based on the state.
For <em>Adam</em> this is just the specified learning rate for the parameter group,
$\alpha$.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">123</span> <span class="k">def</span> <span class="nf">get_lr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">]):</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">131</span> <span class="k">return</span> <span class="n">group</span><span class="p">[</span><span class="s1">&#39;lr&#39;</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<h3>Do the <em>Adam</em> parameter update</h3>
<ul>
<li><code>state</code> is the optimizer state of the parameter (tensor)</li>
<li><code>group</code> stores optimizer attributes of the parameter group</li>
<li><code>param</code> is the parameter tensor $\theta_{t-1}$</li>
<li><code>m</code> and <code>v</code> are the uncorrected first and second moments $m_t$ and $v_t$.</li>
</ul>
<p>This computes the following</p>
<p>
<script type="math/tex; mode=display">\begin{align}
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}
\end{align}</script>
</p>
<p>Since $\alpha$, $\beta_1$, $\beta_2$ and $\epsilon$ are scalars and others are tensors
we modify this calculation to optimize the computation.</p>
<p>
<script type="math/tex; mode=display">\begin{align}
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha \cdot
\frac{m_t / (1-\beta_1^t)}{\sqrt{v_t/(1-\beta_2^t)} + \epsilon} \\
\theta_t &\leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
\frac{m_t}{\sqrt{v_t} + \hat{\epsilon}} \\
\end{align}</script>
</p>
<p>where
<script type="math/tex; mode=display">\hat{\epsilon} = (1-\beta_2^t) \epsilon</script>
is what we should specify as the hyper-parameter.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">133</span> <span class="k">def</span> <span class="nf">adam_update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">,</span>
<span class="lineno">134</span> <span class="n">m</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">v</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Get $\beta_1$ and $\beta_2$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">166</span> <span class="n">beta1</span><span class="p">,</span> <span class="n">beta2</span> <span class="o">=</span> <span class="n">group</span><span class="p">[</span><span class="s1">&#39;betas&#39;</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Bias correction term for $\hat{m}_t$, $1 - \beta_1^t$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">168</span> <span class="n">bias_correction1</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">beta1</span> <span class="o">**</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;step&#39;</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">170</span> <span class="n">bias_correction2</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">beta2</span> <span class="o">**</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;step&#39;</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Get learning rate</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">173</span> <span class="n">lr</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_lr</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Whether to optimize the computation</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">176</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimized_update</span><span class="p">:</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>$\sqrt{v_t} + \hat{\epsilon}$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">178</span> <span class="n">denominator</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">sqrt</span><span class="p">()</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">&#39;eps&#39;</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>$\alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">180</span> <span class="n">step_size</span> <span class="o">=</span> <span class="n">lr</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">bias_correction2</span><span class="p">)</span> <span class="o">/</span> <span class="n">bias_correction1</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>$\theta_t \leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
\frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">183</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">addcdiv_</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">denominator</span><span class="p">,</span> <span class="n">value</span><span class="o">=-</span><span class="n">step_size</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Computation without optimization</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">185</span> <span class="k">else</span><span class="p">:</span></pre></div>
</div>
</div>
<div class='section' id='section-25'>
<div class='docs'>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>$\frac{\sqrt{v_t}}{\sqrt{1-\beta_2^t}} + \epsilon$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">187</span> <span class="n">denominator</span> <span class="o">=</span> <span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">sqrt</span><span class="p">()</span> <span class="o">/</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">bias_correction2</span><span class="p">))</span><span class="o">.</span><span class="n">add_</span><span class="p">(</span><span class="n">group</span><span class="p">[</span><span class="s1">&#39;eps&#39;</span><span class="p">])</span></pre></div>
</div>
</div>
<div class='section' id='section-26'>
<div class='docs'>
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>$\frac{\alpha}{1-\beta_1^t}$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">189</span> <span class="n">step_size</span> <span class="o">=</span> <span class="n">lr</span> <span class="o">/</span> <span class="n">bias_correction1</span></pre></div>
</div>
</div>
<div class='section' id='section-27'>
<div class='docs'>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
<p>$\theta_t \leftarrow \theta_{t-1} - \alpha \cdot
\frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">192</span> <span class="n">param</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">addcdiv_</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">denominator</span><span class="p">,</span> <span class="n">value</span><span class="o">=-</span><span class="n">step_size</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-28'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
<h3>Take an update step for a given parameter tensor</h3>
<ul>
<li><code>state</code> is the optimizer state of the parameter (tensor)</li>
<li><code>group</code> stores optimizer attributes of the parameter group</li>
<li><code>grad</code> is the current gradient tensor $g_t$ for the parameter $\theta_{t-1}$</li>
<li><code>param</code> is the parameter tensor $\theta_{t-1}$</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">194</span> <span class="k">def</span> <span class="nf">step_param</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">group</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">any</span><span class="p">],</span> <span class="n">grad</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-29'>
<div class='docs'>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p>Calculate weight decay</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">205</span> <span class="n">grad</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_decay</span><span class="p">(</span><span class="n">param</span><span class="p">,</span> <span class="n">grad</span><span class="p">,</span> <span class="n">group</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-30'>
<div class='docs'>
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Get $m_t$ and $v_t$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">208</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">get_mv</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">grad</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-31'>
<div class='docs'>
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
<p>Increment $t$ the number of optimizer steps</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">211</span> <span class="n">state</span><span class="p">[</span><span class="s1">&#39;step&#39;</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span></pre></div>
</div>
</div>
<div class='section' id='section-32'>
<div class='docs'>
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Perform <em>Adam</em> update</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">214</span> <span class="bp">self</span><span class="o">.</span><span class="n">adam_update</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">group</span><span class="p">,</span> <span class="n">param</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span></pre></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>