mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 18:58:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			86 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/bin/python
 | |
| 
 | |
| import torch
 | |
| import torchvision
 | |
| import torchvision.transforms as transforms
 | |
| 
 | |
| import torch.nn as nn
 | |
| import torch.nn.functional as F
 | |
| 
 | |
| import matplotlib.pyplot as plt
 | |
| import numpy as np
 | |
| 
 | |
| from sklearn.model_selection import KFold
 | |
| from torch.utils.data.sampler import SubsetRandomSampler
 | |
| 
 | |
| 
 | |
| 
 | |
| # Plot the loss of multiple runs together
 | |
| def PlotLosses(losses, titles, save=None):
 | |
|     fig = plt.figure()
 | |
|     fig.set_size_inches(14, 22)
 | |
|     # Plot results on 3 subgraphs
 | |
|     # subplot integers:
 | |
|     #       nrows
 | |
|     #       ncols
 | |
|     #       index
 | |
|     sublplot_str_start = "" + str(len(losses)) + "1"
 | |
| 
 | |
|     for i in range(len(losses)):
 | |
|         subplot = sublplot_str_start + str(i+1)
 | |
|         loss = losses[i]
 | |
|         title = titles[i]
 | |
| 
 | |
|         ax = plt.subplot(int(subplot))
 | |
|         ax.plot(range(len(loss)), loss)
 | |
|         ax.set_xlabel("Epoch")
 | |
|         ax.set_title(title)
 | |
|         ax.set_ylabel("Loss")
 | |
| 
 | |
|     # Save Figure
 | |
|     if save:
 | |
|     	plt.savefig(save)
 | |
|     else:
 | |
|     	plt.show()
 | |
| 
 | |
| 
 | |
| 
 | |
| def ClassSpecificTestCifar10(net, testdata, device=None):
 | |
|     classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
 | |
|     class_correct = list(0. for i in range(10))
 | |
|     class_total = list(0. for i in range(10))
 | |
|     with torch.no_grad():
 | |
|         for data in testdata:
 | |
|             if device:
 | |
|                 images, labels = data[0].to(device), data[1].to(device)
 | |
|             else:
 | |
|                 images, labels = data
 | |
| 
 | |
|             outputs = net(images)
 | |
|             _, predicted = torch.max(outputs, 1)
 | |
|             c = (predicted == labels).squeeze()
 | |
|             for i in range(4):
 | |
|                 label = labels[i]
 | |
|                 class_correct[label] += c[i].item()
 | |
|                 class_total[label] += 1
 | |
| 
 | |
|     # Print out
 | |
|     for i in range(10):
 | |
|         print('Accuracy of %5s : %2d %%' % (
 | |
|             classes[i], 100 * class_correct[i] / class_total[i]))
 | |
| 
 | |
| 
 | |
| 
 | |
| def GetActivation(name="relu"):
 | |
|     if name == "relu":
 | |
|         return nn.ReLU()
 | |
|     elif name == "leakyrelu":
 | |
|         return nn.LeakyReLU()
 | |
|     elif name == "Sigmoid":
 | |
|         return nn.Sigmoid()
 | |
|     elif name == "Tanh":
 | |
|         return nn.Tanh()
 | |
|     elif name == "Identity":
 | |
|         return nn.Identity()
 | |
|     else:
 | |
|         return nn.ReLU() | 
